

Page 2 of 140.

Abstract

This report documents the groo programming language. This includes design deci-
sions, syntax analysis, contextual analysis and execution of a groo program.

A formal operational semantics is given for the groo language as well as a formal
description of the type system.

A lexer and parser generator has been implemented to conduct the syntax analysis,
and a type checker to conduct the contextual analysis.

Finaly a recursive interpreter and a virtual machine, which can be used to execute
groo programs, have been implemented.

Theme:
Tools, Languages and Compilers

Project period:
DAT2, spring semester 2010

Project group:
D201A

Concluded:
28th May 2010

Group members:
Karsten Jakobsen
Anne K. Jensen
Jonas F. Jensen
Sabrine C. H. Mouritsen
Thomas S. Nielsen
Lars Kærlund Østergaard

Supervisor:
Hans Hüttel

Prints: 7

Report page count: 129

Appendix page count: 8

——————————
——————————
——————————
——————————
——————————
——————————

The department of computer science at Aalborg University

Page 4 of 140.

Preface

The reader is expected to be familiar with operational semantics and set theory in
order to understand the formal language specification. The implementation of groo is
programmed in C++, so familiarity with this is necessary to understand the code.

The notation given in Hüttel [2010] has been used to describe the operational se-
mantics and type system of groo.

Obtaining the Source Code and Documentation

The CD provided with this report contains source code, documentation, as well as
code samples and binaries. Instructions are provided in the README file located at
the root directory of the CD. The CD includes a makefile which generates sources
and builds the groo compiler. GNU Coreutils, GCC, Python are required to run this
makefile.

Contents

Contents 5

Figures 8

I Introduction 9

1 Project Description 10
1.1 Problem Analysis . 10
1.2 Problem Statement . 18

2 Language Design 20
2.1 Design Requirements . 20
2.2 Type System . 20
2.3 Informal Language Specification . 21

3 Infrastructure 24

II Semantics 26

4 Abstract Syntax for groo 27
4.1 Syntactic categories in groo . 27
4.2 Abstract syntax . 27

5 Operational Semantics 30
5.1 Environments . 30
5.2 Auxiliary Functions . 31

5.2.1 The numeral function . 31
5.2.2 Update Function for Environments 31
5.2.3 Update Function for Stores . 31
5.2.4 The New Location Function . 31
5.2.5 The Apply Operator . 31

5.3 Transition Systems in groo . 31

6 Groo Type System 48
6.1 Definition of Types . 48
6.2 Variable Type . 48
6.3 Environments . 48

6.3.1 Standard Environment . 49
6.4 Auxiliary Functions . 49
6.5 ApplyT Function . 49

5

CONTENTS Page 6 of 140.

6.5.1 The Set Function . 51
6.5.2 Domain of Partial Functions . 51
6.5.3 Update Function for Type Declaration Environments 51
6.5.4 Update Function for Variable Declaration Environments 51
6.5.5 dt from Type Declarations . 51
6.5.6 dv from Type Declarations . 52
6.5.7 dv From Variable Declarations . 52
6.5.8 Tp From Parameter Declarations 52
6.5.9 dv From Parameter Declarations 53
6.5.10 dv From Label Declarations . 53
6.5.11 dv From Member Declarations . 53
6.5.12 Tp From Arguments . 53
6.5.13 T From Type Annotations . 54

6.6 Type Judgements . 54

III Syntax Analysis 66

7 Lexing 67
7.1 Deterministic Finite State Automata . 67

7.1.1 What are regular expressions? . 67
7.2 Constructing a DFA . 68
7.3 Implementing a Lexer . 70
7.4 Minimisation of DFA’s . 72

7.4.1 Principle of Minimising a DFA . 72
7.4.2 Implementing Minimise(DFA) . 73
7.4.3 Example of minimising a DFA . 75

7.5 Lexical Analysis Benchmark . 77

8 Parsing 78
8.1 Context-Free Grammars . 78
8.2 LR Parsing . 79
8.3 LALR(1) Table Generation . 81

8.3.1 Computation of LR(0) States . 82
8.3.2 Computation of LR(1) States . 84
8.3.3 Computation of LALR(1) States . 85
8.3.4 Generating Parsing Tabels . 88

8.4 Resolution of Conflicts . 88
8.5 Error Recovery . 89
8.6 Efficient Push-Down Automaton Implementation 89
8.7 Grammar For groo . 93

CONTENTS Page 7 of 140.

IV Contextual Analysis 96

9 Contextual Analysis 97
9.1 Abstract Syntax Tree (AST) . 97
9.2 Visitors . 98
9.3 Type Checker . 99

9.3.1 Type checking . 101
9.3.2 Identification Table . 103

V Execution 104

10 Interpretation 105
10.1 groo Recursive Interpretor (gri) . 105

11 VROOM, Virtual groo Machine 110
11.1 A Virtual Machine for Groo . 110
11.2 Runtime Organisation in VROOM . 111

11.2.1 Registers . 112
11.3 gril, groo Intermediate Language . 112

11.3.1 Instruction layout . 112
11.3.2 Instruction Set . 113

11.4 MOM: Mark-sweep Object Manager . 115
11.4.1 Mark-Sweep Garbage Collection 116
11.4.2 Future Optimisations . 117

11.5 Code Templates . 117
11.5.1 The Allocation Visitor . 122

VI Closing 123

12 Discussion 124

13 Future Work 126

14 Conclusion 129

VII Appendices 130

A Code Samples 131

B Groo Intermediate Language Example 136

Bibliography 138

List of Figures

7.1 Trees for the regular expressions in example 1 69
7.2 The combined tree for {(x|y)∗x} and {test}. 69
7.3 NFA for example 1. 69
7.4 The String buffer and its pointers. 71
7.5 DFA which can be minimised. 72
7.6 Intermediate steps of minimising a DFA. 75
7.7 Minimised version of the DFA from figure 7.5. 76
7.8 Lexter vs flex tokenize challenge. 77

8.1 Classes of context free grammars. 81

9.1 The visitor pattern. 99

10.1 Environment, location and variable association 107

11.1 Tombstone diagram for VROOM. 110
11.2 Organization of memory at runtime within VROOM. 111
11.3 A heap allocated structure with available metadata. 116

8

Part I

Introduction

9

CHAPTER 1

Project Description

1.1 Problem Analysis

Today, a lot of software is written in slow interpreted dynamic scripting languages - es-
pecially web applications. These, rather slow, dynamic languages are chosen because
they are easy to use, offer platform independence and high productivity. However,
when these applications need to scale, it is often done by merely connecting more
hardware to the system, so the application can accommodate more traffic. If, instead,
the code were written in more efficient languages or statically compiled, the perfor-
mance could be improved significantly. It would probably still be necessary to increase
the amount of hardware in use, in order to scale sufficiently - but the amount of extra
hardware required could be reduced considerably. In addition, these languages do not
lend themselves well for large-scale web applications - the following text will explore
why.

The obvious question is: if statically typed languages are so much faster, why are
they not in wider use - in place of dynamic languages? A possible answer is that dy-
namic scripting languages may offer more productivity gains up-front and therefore
offer quicker development cycles. They may also have a less steep learning curve than
more explicit statically typed languages. Despite the fact the scripting languages are
dynamically typed, they still offer some degree of safety, since the most common lan-
guages (e.g. Python, PHP, Ruby) provide no means of directly manipulating pointers.
In terms of productivity we refer strictly to the amount of time required in order to
create a working program. A script may take half as long to write as a C/C++/Java
program, as shown in the phonecode programming problem in Prechelt [2002].

Nevertheless, productivity is still a loosely defined method of measurement, as it
does not tell us anything about the quality of the code written, as there are cases where
a dynamically typed program may contain many errors that are not immediately ap-
parent, due to the typing mechanism and possible lack of code coverage during execu-
tion. Neither does it tell us how many development cycles are required for a program
to become stable. Short development cycles are advantageous for rapid prototyping.
Yet, when a dynamically typed program makes the transition from prototype to pro-
duction code, a lot of discipline is required of the programmer.

It is fair to assume that a programmer, being human, may overlook common er-
rors or less obvious errors in a large code base. The error-checking burden is actually
placed on the programmer, as they must be able to foresee many execution errors.
Reasoning about program behaviour obviously requires a lot of run time testing and
the enforcement of disciplined use of existing modules relies very much on the pro-
grammer. Clearly, the productivity gained from the writeability of scripting languages
is minimised when these factors are taken into account. Therefore it is in its place to

10

PROBLEM ANALYSIS Page 11 of 140.

conclude that productivity is affected by testability and maintainability.
In terms of performance, scripting languages fall short of their statically typed

counterparts. For example, the typical memory consumption of a script is about twice
that of a C/C++ program. Also, scripting languages are less reliable than statically
compiled languages - many errors are first discovered at run time, rather than at com-
pile time. Types in static languages are explicitly declared and checked at compile
time, which means that all type errors will be found at compile time.

In dynamically checked languages the type of a variable is not declared during
writing; the actual values assigned to a variable decides its type. Also, type check-
ing is performed at run time. Thus, variables can refer to a value of any type during
execution. For example, assigning an arbitrary non-integer value to a variable, the pro-
grammer intended to use as an integer later in the program, is perfectly legal. How-
ever, this error will only be uncovered in the running program. As a project created
in a scripting language grows in complexity, bugs will be introduced at some point -
yet the programmer has only very limited error-recovery tools at hand. Development
with a scripting language may also be more error prone, and more time will often be
spent debugging in dynamically typed languages compared to static languages.

A very popular scripting language for web applications is PHP, which offers high
productivity, yet suffers performance-wise for larger applications. PHP is a dynamic,
weakly-typed, and interpreted language, which consequently will never perform as
fast as compiled code. Recently Facebook, a popular social networking site built with
PHP, started transforming its PHP source code into highly optimized C++, which is
then compiled with g++ into native code by the means of a tool called HipHop for
PHP. This tool includes a code transformer as well as a reimplementation of the PHP
run time system. By using this technology Facebook reduced their average CPU con-
sumption by fifty percent [Zhao, 2010].

PROBLEM ANALYSIS Page 12 of 140.

Considerations for a Programming Language

To begin with, a well-designed programming language makes use of the fundamental
concept of abstraction. With regard to language design, abstraction can be thought of
as initially identifying all syntactic categories of the language and subsequently de-
signing a coherent set of abstraction facilities for each of these. For instance, many lan-
guages support process abstraction with sub-programs, expression abstraction with
functions, abstract data types, objects and modules.

Furthermore, the principle of data type completeness is a feature found in well-
designed languages. This basically means that all data types are first class without
arbitrary restriction on their use. A language is type complete if and only if all three
of the following conditions are met:

• Each identifier, operator and expression has a type and its type may not depend
on the context in which it appears.

• For each type in the language it is possible to write an expression having this
type.

• Function parameters must be able to be of any type and return results of any
type. So, it is possible to yield a function of an even more complex type.

An example of a language that breaks this principle is an early version of Pascal, where
it was not possible to yield an array type from a procedure [Tennent, 1981, Demers and
Donahue, 1980].

The aforementioned design guidelines still apply to the domain of web program-
ming, since web applications can be treated as complex software systems which ben-
efit from being implemented in well-designed programming languages. Moreover,
the programming domain of web software comprises many different languages for
each their purpose. One important goal is to deliver dynamic web content, which re-
quires various computational tasks to be performed on the server, rather than the client
(browser) - such as serving a specific document or requesting data from a database
and outputting it to a mark-up language (specifically HTML/XHTML). Many web
programming languages are designed to be directly embedded in an HTML docu-
ment. Typically these are scripting languages, for example PHP or Python. Besides
simply outputting HTML to the client, these languages can execute other programs on
the server or request services from external sources, which can be written in another
language.

There are many factors to consider when designing a programming language for
web applications. Among these factors is readability - which is rather broadly defined
as how easily a program can be read and comprehended by a human. Readability
also has a direct relation to the maintainability of applications written in a specific
language. Since readability is such a broad criterion, it makes sense to consider it in the
context of the domain of web applications, in order to get a more clear understanding
of which things are important for readability in this particular area. Therefore, the
syntax must be designed to fit the domain, in order to avoid obscure and long-winded
code.

PROBLEM ANALYSIS Page 13 of 140.

Another aspect that affects readability is the simplicity of the language. Specifically,
this could be measured by the amount of basic constructs available in the language.
It is important to strike a balance between simplicity and complexity, though, since
either extreme can result in overly complicated or verbose code [Sebesta, 2008].

To sum up, some goals for a programming language can be readability, reliability,
and efficiency. These features can be supported by implementing a type system, for
instance. Other very important aspects, such as maintainability and code reuse, can
be facilitated by using object-oriented programming, especially in conjunction with a
type system. In the following we will discuss how a language can benefit from a type
system and object-orientation.

The Advantages of a Type System

A type system is a formal method used to prove the absence of certain program errors
and ensure general correctness properties in a programming language. A type system
can be implemented in many different ways, though its purpose is usually the same;
a contract between the programmer and the compiler. A type system captures the
programmer’s intentions and, most importantly, captures execution errors in advance.
Pierce [2002] gives the following definition:

A type system is a tractable syntactic method for proving the absence of certain
program behaviours by classifying phrases according to the kinds of values they
compute.

This means that a type system can also be regarded as a tool for reasoning about pro-
grams. This method places emphasis on the classification of terms with respect to the
properties of the values they will compute when a program is executed.

A type is basically an invariant which can be used to restrict the set of values a
variable can hold during execution. Such an invariant can, for example, be specified
by explicitly enhancing a variable with a type annotation.

To verify that a program is type correct, a type checker is used. A static type checker
rejects potentially unsafe programs at compile time. This means that good program
behaviour is determined before execution. A program that is accepted by the type
checker is said to be well-typed; conversely a rejected program is ill-typed.

Uncovering errors at compile time rather than run time has tremendous impli-
cations for program safety. The types of errors can be divided into two categories:
trapped errors that cause computation to halt immediately and the more subtle un-
trapped errors that may cause arbitrary program behaviour. The latter class may go
unnoticed, and cause potentially disastrous problems without crashing the program.
A language is said to be safe if no program fragments cause untrapped errors to occur.

Some possible execution errors may be characterized as forbidden errors, which
are a set of predetermined execution errors. They should include all untrapped errors
as well as a subset of the trapped errors. A language is weakly checked if its set of
forbidden errors does not contain all untrapped errors. In other words; not all unsafe
operations are detected statically. For example, C/C++ has a lot of unsafe features,
such as pointer arithmetic, which places a lot of responsibility on the programmer to
enforce safety.

PROBLEM ANALYSIS Page 14 of 140.

The safety of a type system must be judged according to its own set of forbidden
errors, which is the definition of which kinds of behaviour it aims to prevent. In other
words, the set of possible errors are decided based on the language’s definition of
run time type errors. However, there is considerable overlap between the behaviours
regarded as run time type errors in many different languages. So, there exists common
ground for judging and classifying what is bad program behaviour.

A type system can offer more than simply prevention of low-level errors. It can be
used to protect the integrity of data abstractions by enforcing information hiding. For
example, illegal access to protected fields will be treated as a run time type error.

Static type checkers calculate a static approximation of type correctness, since they
evaluate type information at compile time. They can only prove the absence of certain
errors, and not their presence, which makes static type checking conservative. A type
system is yet incomplete, since some well-behaved programs will be rejected by a
static type checker.

For example, a program fragment may contain an if-then-else-statement of the
form, if C then E1 else E2, where C is a boolean condition, E1 is a well-typed expres-
sion and E2 is an ill-typed expression. The condition C could be expressed as 1 == 1
so that it always evaluates to true at run time. Even so, this program fragment can-
not be statically determined to be well-typed, since static analysis cannot predict that
the E1 branch will always be executed. Nevertheless, this kind of behaviour is bene-
ficial, since it ensures that all programs are well-typed, regardless of how frequently
branches may be executed at run time.

Types have many advantages, which are discussed in the following.
They can enhance readability, since explicitly typed languages can provide vari-

ables, functions, etc., with type annotations, which give a program some degree of
documentation.

A type system makes the job of a programmer easier as it can be built into a com-
piler, enabling automatic type checking.

Both reliability and efficiency can be improved with types, since types provide a
safety guarantee, as all type errors are uncovered during compilation with a static
type checker. This prevents unsafe programs from ever running. Also, many routine
programming errors can be captured, making debugging easier. Typed languages also
permit certain optimisations, such as cheaper memory allocation for variables, since
the execution overhead of run time checks can be avoided.

As mentioned earlier, a typed language may enforce program modularity and the
integrity of data abstractions. This may allow a typed program to be organized into in-
terfaces for program modules which can be compiled independently of each other. The
programmer can decide what information a given module’s interface should expose.
This enables loose coupling between modules, since the dependency between mod-
ules is limited to their respective interfaces. This kind of information hiding greatly
supports code reuse as dependencies between code fragments are minimized. In ad-
dition, when the interfaces are stable, changes to a certain module do not affect its
consuming modules, thus avoiding recompilation of these [Cardelli, 2004, Palsberg
and Schwartzbach, 1994, Pierce, 2002].

PROBLEM ANALYSIS Page 15 of 140.

Benefits of Object-Oriented Programming

As mentioned above, object-oriented programming (OOP) supports maintainability
and code reuse. In addition, concepts, such as information hiding and modularity,
can be implemented straightforwardly using this model. OOP introduces the idea of
objects, classes, late binding, and sub-classing.

A class can be regarded as a template from which objects can be constructed. An
object is an encapsulated state and classes describe objects with the same implemen-
tation. Objects created from a certain class are instances of this particular class. This
allows a program to contain a number of instances of a certain class, enabling the use
of one class on different data at the same time.

A class can contain procedures which are called methods. A method enables an
object to receive messages or send messages to other objects. For example, a message
could be passed to an object in the following manner: obj.m(x), where obj is the
object with method m, or message selector, which takes the argument x, which too is
an object. The concept of message passing between objects is a central part of OOP.

In addition, OOP employs late binding. Late binding basically means that when
a message is sent to an object its implementation is dynamically bound, depending
on the type of the receiving object. For example, we may require a procedure to ren-
der a list of different HTML elements, say headings and paragraphs, which inherit
from a common class, called Element containing a method called Print. The two
classes override this method, so instances of Heading print "<h1>...</h1>" and
Paragraph instances print "<p>...</p>". As we iterate over a mixed collection of
Elements we send the Print message to each instance. Element.Print will then
dynamically invoke the correct implementation of Print belonging to the current ob-
ject [Palsberg and Schwartzbach, 1994].

Sub-classing

With regard to code reuse it is very useful to be able to generalise certain data struc-
tures or objects, which share a common number of operations, yet need to behave in
a different way or be extended. In addition, restricting the usage of these objects is
important for safety and for ensuring that a program behaves as desired. It is possible
to implement these requirements with the means of sub-classing.

Sub-classing is a technique for reusing object templates, namely classes. A sub-
classing mechanism known as inheritance can be employed. With inheritance new
classes that share the implementation or specification of an existing class can be cre-
ated, effectively allowing reuse of an implementation. The inheriting class is called
a subclass, whereas the class from which it inherits is its superclass. It is possible to
apply sub-classing to any number of levels. This means that a code base can be organ-
ised into logically grouped class hierarchies, which produce the benefits of reusable
software, including more organized code.

Depending on the particular predicate and sub-classing mechanism used, various
degrees of restriction on the reuse of objects can be enforced. Here, types are needed
in order to force disciplined reuse of objects, since they serve the purpose as predicates
on objects. There are a number of different predicates which can be used. They differ

PROBLEM ANALYSIS Page 16 of 140.

in which and how many aspects of objects are under consideration and whether they
put emphasis on the implementation or the specification.

When classes are used as types the predicate requires that an object is an instance
of a certain class or any of its subclasses. However, the way this is determined relies
on the specific sub-classing mechanism. In the following we will describe a number
of different sub-classing mechanisms, proposed by Palsberg and Schwartzbach [1992].
The list is ordered by how restrictive the requirements are.

wwwwwwwwwwwwwwwwwwwwwww�

• Class types + arbitrary subclasses: Methods may be added, overwritten or
removed. This is the least restrictive predicate, since any collection of methods
correspond to some subclass.
• Name compatibility: Demands that there exists a particular set of named
methods.
• Interface types: We consider name compatibility and include the types of the
arguments of the required methods.
•Class types + monotone subclasses: New methods can be added and existing
method bodies can be overridden. This still preserves the interface.
•Method behaviour: Restrictions are imposed on the behaviour of the required
methods. This could be done by specifying pre- and post conditions.
• Class types + strictly monotone subclasses: It is only possible to add new
methods. In addition, the specified behaviour must have a certain implemen-
tation.

The methods listed above offer different ways of restricting the possibilities for
object reuse and limit type compatibility by specifying a predicate that an object must
satisfy and thereby a relation between implementations. Moreover, they propose four
different definitions of how types are defined, namely by class + subclasses, name
compatibility, interfaces, or behaviour [Palsberg and Schwartzbach, 1992].

PROBLEM ANALYSIS Page 17 of 140.

Sub-typing

In the previous section we reviewed different models for the semantics of sub-classing,
including which transformations on classes each model allowed. In the following the
concept of sub-typing is discussed.

Sub-typing signifies a relation on types. Generally this relation is regarded as a
partial order and is defined by the type system. For example, if T1 is a subtype of T2,
written as T1 <: T2, then any object of type T1 is also an object of type T2. Therefore
any object of type T1 can be substituted as an argument where an object of type T2 is
expected.

Sub-typing essentially enables us to use the subtype polymorphism of objects. As
mentioned in the previous section, exactly how sub-typing should be understood de-
pends on how a type is defined. The definition of a type must be sound, i.e. it ensures
the absence of certain run-time errors, as discussed earlier. We essentially require that
sub-typing provides adequate protection by the subtypes of the types of the formal
parameters. Again, Palsberg and Schwartzbach [1992] introduces four major notions
of sub-typing. The different definitions of a type and their corresponding sub-typing
mechanisms are listed below.

• Class types + sub-classes: subclassing

• Name compatability: more methods

• Interface: conformance

• Behaviour: weaker preconditions, stronger postconditions

When classes are used as types, we end up with a type system that is sound by
definition. Class types + subclasses are regarded as implementation types, whereas
the rest are specification types.

With specification types, sub-classing and sub-typing can be two very distinct con-
cepts. For name compatibility, a sub-type must simply implement more methods,
otherwise it is trivially the same type as its super-type. An interface sub-type must
conform to its super-type. Specifically, the sub-type must respect name compatibil-
ity, which is further constrained by requiring that the required named methods have
conforming signatures.

Finally, for behaviour types, a sub-type must have weaker pre- and stronger post-
conditions.

In essence, one must decide whether to separate classes and types, or rather, use
specification types or implementation types or both at the same time. A type system
based on classes requires that all instances of a given class have the same type. Spec-
ification types do not require that this rule is satisfied, because class relationships do
not need to have anything in common with type relationships.

Each approach has its drawbacks. For instance, with implementation types we
cannot convey if a class has more than one type and we do not permit two different
type stacks of an implementation to be interchangeable. Specification types exhibit an-
other set of potential problems. In the case that interface types are used, conceptually
dissimilar types may correspond to each other.

PROBLEM STATEMENT Page 18 of 140.

1.2 Problem Statement

Since we have discussed some of the main differences between dynamic languages
and static languages, we would like to find out if it is possible to encourage the creation
of more efficiently written web applications. Moreover, it would be interesting to see
if it is feasible to produce a statically typed object-oriented language with the features
that developers have come to expect from the dynamically typed languages, while
maintaining the performance benefits of compiled languages. In the following we
have listed some of the questions we would like to answer.

• How can we create a statically typed object-oriented programming language
which can be used for web development?

• Can we implement abstraction facilities similar to those that exist in popular
dynamically typed languages, while preserving the advantages of a statically
typed programming language?

• How can such a language be formalised?

• How can we implement a type system that enables sub-classing?

• How can we translate and execute code written in this language?

To begin with will need to take various language design aspects into consideration,
including syntax, abstraction, and type completeness. Furthermore, we will have to
design a type system in order to create a safe, readable, and efficient programming
language. We can formalise both the type system and semantics of this language by the
means of structural semantics. In addition, we have highlighted some of the benefits of
object-oriented programming, which will be included in the language. This obviously
requires us to decide on what kind of sub-classing technique we need. This goes hand-
in-hand with the choice of sub-typing mechanism.

Initially, this will require us to translate the program text into a more machine-
friendly format called an abstract syntax tree. This can be accomplished with custom
made or existing lexers and parsers. The abstract syntax tree representation will un-
dergo a number of transformations, such as type checking, so that programs can be
executed according to the specifications.

For our language we will use a type system based on implementation types, specif-
ically class + subclasses, where the sub-typing mechanism is based on subclasses. The
reason for this choice is primarily due to the benefits of code reuse provided by class
types. Finally, we will employ some degree of implicit typing to find a balance be-
tween readability and writeability of programs. With this we will explore the idea
of finding a good compromise between explicit and implicit type information. Some
degree of implicit typing may also be advantageous for developing rapid web proto-
types.

In order to test our language we will develop an interpreter. We will create a simple
virtual machine, in order to compile programs into a faster intermediary format, which
will be easier to reason about in terms of performance.

PROBLEM STATEMENT Page 19 of 140.

Overview of this Report

The following shortly describes the contents and structure of this report.

Project Description

Part I contains the problem analysis, problem statement and an informal language
specification.

Semantics

Part II contains the abstract syntax, the operational semantics and the type system.

Syntax Analysis

Part III explains the lexer and parser generator implementation, and how the gener-
ated lexer and parser transform text into an AST.

Contextual Analysis

Part IV covers AST decoration and the implementation of a type checker.

Execution

Part V documents how groo is executed using a recursive interpreter, and how groo
programs are translated into the intermediate language, gril, including the execution
of this on the virtual machine VROOM.

Closing

Part VI discusses how groo could be improved in future work, our results and con-
cludes the report.

Appendices

Part VII

CHAPTER 2

Language Design

This chapter discusses the language design decisions for the programming language.

2.1 Design Requirements

The primary goal is to create a language which lends itself well to web development
purposes. The language should be able to scale from small-scale prototypes to larger
and more complex web applications. More specifically, it should be relatively easy to
start with a small web page and transition to a more elaborate web application.

The goal for our programming language, which we have named groo, is to mimic
dynamic languages such as Python and Ruby, with faster execution time and more
correct code. The requirements that we deem important for groo are listed below:

Productivity The ability to write well-typed code efficiently with a writeable syntax.

Code reuse The ability to easily reuse code, by generalising facilities into classes.

Encapsulation The ability to create data abstractions and protect an implementation
by enforcing disciplined use of its interface.

Type safety A statically checked language provides better run-time safety and more
guarantees for program correctness.

Efficiency Static type checking allows efficient memory allocation and faster execu-
tion, since many run-time checks are unnecessary.

2.2 Type System

As mentioned in the problem statement we have decided to base the type system on
implementation types. This is because it enables code reuse, and requires explicit type
definitions. The type system for groo is nominal, since the name of a class conveys its
type and sub-typing is explicitly declared.

Explicit subtype declaration avoids spurious categorisation, where a structurally
compatible type can be substituted in a place where a logically different type is ex-
pected. This prevents the case where, a class, C, cannot suddenly be replaced by the
logically unrelated type B, just because it coincidentally happens to conform to the
specification of B [Pierce, 2002].

Apart from classes groo will have primitive types, which are int, bool and float.
In this way we may limit the message passing overhead for primitive expressions. If,

20

INFORMAL LANGUAGE SPECIFICATION Page 21 of 140.

for instance, int were an object and one were to multiply two integers with this syn-
tax: a * b, one would typically send b to the message selector * on the object a.
Rather than doing this, primitives will be treated separately from objects. Of course,
this decision results in a language that is not purely object-oriented, however this in-
consistency may be more efficient.

Moreover, we have decided to support anonymous functions, first-class functions,
returning functions (higher-order functions) or members as values, which requires us
to support closures. In terms of type equivalence for function types, specification types
will be used. So, for two given functions f and g, the two are equivalent if and only if
both their argument types and return types are the same. Syntactically, function types
are not assigned an identifier, but are denoted by their return and argument types.

Finally, we will support a tuple abstraction in groo. The primary reason for in-
cluding tuples is to allow functions to yield multiple return values and avoid output
parameters which may be complicated to use. In fact, the use of output parameters is
discouraged in the .NET framework, because the general audience cannot be expected
to master output parameters [Abrams and Cwalina, 2008, section 5.8.3].

2.3 Informal Language Specification

groo will borrow some inspiration from the syntax of the popular web development
language, Python. This choice is influenced by the overall writeability, readability and
succinctness of Python code. Of course, we cannot escape from the fact that the syntax
of a language may very much be influenced by subjective arguments. Nevertheless,
the language has certain useful abstraction facilities, such as tuples, iterators and easy
string manipulation, which are exposed in a minimalistic way through certain syntac-
tical productions. These may aid us in designing the required abstraction facilities for
groo with a desirable syntax.

Blocks

We have decided to use significant whitespace to indicate blocks, i.e. a block is a
continuous set of statements with the same indentation. We believe that significant
whitespace discourages large complex code blocks, rather it encourages the developer
to split complex routines into smaller subroutines.

Type Annotations

To improve writability we have decided to use implicitly typed variables. The declara-
tion of a variable is indicated by the keyword var, e.g. declaring the variable x could
have the form var x = 0. Later assignment to the variable x is written as x = 1.
This means that variables will be implicitly typed. The type of the right-hand-side
expression yields the static type of the declared variable.

Members of classes (instance variables and methods) require explicit type annota-
tion. This design choice serves both for the purpose of documentation and to provide

INFORMAL LANGUAGE SPECIFICATION Page 22 of 140.

guidance for the type checker. Type annotated members increase readability, since the
reader does not have to study the block of a method to know its return type.

The motivation for having implicitly typed variables and explicitly typed members
is an attempt to balance readability and writability. One could easily argue against im-
plicitly typed variables in some cases. For instance, the yielded type of the statement
var x = <complex expr> could be unclear.

However, since the type of the expression is determined compositionally, meaning
that the type of an expression depends only on the types of its immediate constituents,
one can deduce the actual type by studying its immediate constituents. This minor
problem may be remedied by using parenthesises to group complex sub-expressions.
An integrated development environment may also provide extra assistance by anno-
tating variables with type information gathered from automatic type checking.

Scope

groo will have static scope rules. With static scope the name of a variable refers to its
local lexical environment and variable occurrences are matched to their binding stat-
ically. The parameter mechanisms available in the language will be call-by-reference
for objects and call-by-value for primitive types.

Code Sample

A code sample for the groo language is shown in listing 2.1.
This program uses the class HtmlBuilder to construct different kinds of HTML

tags. This is done with the maketag and maketagAttr methods, which each return
anonymous functions that return a string representing an HTML element with its con-
tents. The method signatures in line 22 and 27 show that each method yields a function
type. This is indicated by the prefixed type annotation resembling T1 → T2.

So, the variables h1 and p are actually functions which output content enclosed
by their respective HTML elements. In line 12 An anonymous function which outputs
links/anchors is created, called and passed to the p function. The result is a link which
is nested within a paragraph.

Listing 2.2 shows the output.
More code samples can be found in the appendix in part VII.

INFORMAL LANGUAGE SPECIFICATION Page 23 of 140.

1 class MainClass:
2 int main():
3 out(”<html>\n<head></head>\n<body>\n”)
4 var html = HtmlBuilder()
5
6 var h1 = html.maketag(”h1”)
7 var p = html.maketag(”p”)
8
9 out(h1(”Hello World!”))

10 out(p(”A paragraph.”))
11 out(p(”Another paragraph.”))
12 out(p(html.maketagAttr(”a”)(” Click here”,” href=\’foo. com\’”)))
13
14 out(”</body>\n</html>\n”)
15 return 0
16
17 void out(string txt):
18 prints (txt)
19
20 class HtmlBuilder:
21
22 string−>string maketag(string name):
23 var tag = (string txt)−>string:
24 return (”<”+name+”>”+txt+”<”+name+”/>\n”)
25 return tag
26
27 ((string,string)−>string) maketagAttr(string name):
28 var tag = (string txt , string attr)−>string:
29 return (”<”+name+” ”+attr+”>”+txt+”<”+name+”/>\n”)
30 return tag

Listing 2.1: Code example for a simple webpage.

Listing 2.2: Output from running the code in listing 2.1.
<html>
<head></head>
<body>
<h1>Hello World!<h1/>
<p>A paragraph .<p/>
<p>Another paragraph .<p/>
<p><a hre f = ’ foo . com’>Click here<a/>
<p/>
</body>
</html>

CHAPTER 3

Infrastructure

The groo compiler is comprised roughly of four parts. When code is supplied for
interpretation, each part handles a specific aspect of converting the code into a running
program.

Lexical Analysis

The first part is the lexical analysis. The lexer reads the code provided to the inter-
preter, and splits the code into lexical chunks, or tokens, using the methods described
in chapter 7. The lexer follows an instruction set looking for phrases that are known to
it. The lexer is run on demand by the parser, which is the next step, or simply by groo
if tokenize is run.

Syntax Analysis

The second step is the syntax analysis. This is where the parser constructs an abstract
syntax tree (AST). It does this by attempting to place the tokens it requests from the
lexer in the grammar it supports. When the parser completes a grammar rule, the
parser creates a new node in the AST, thus effectively converting the user written code
into a tree of different nodes describing concisely their purpose. How this is done is
explained in chapter 8. However, while the code may have made perfect sense from a
grammatical point of view, it may not make any actual sense. For instance, the parser
does not distinguish between different types. It merely deduces that they are a Type,
and moves on. It would therefore be perfectly legal to assign an integer to a variable
declared as a string from the parsers point of view. Once the parser reaches an accept
state, the contextual analysis begins.

Contextual Analysis

The contextual analysis is comprised of two visitors. One visitor handles error termi-
nals that may have been created by the parser, if it suddenly receives a token it did
not expect. These error terminals are caused by the user writing something syntacti-
cally incorrect. The other visitor is more interesting and handles type checking. The
type checker visitor decorates the AST with type information. While it does this, it
also checks to ensure that the AST satisfies the type rules, printing errors when type
errors occur. The type checker and the contextual analysis in general is explained in
detail in part IV. This decorated AST is then used later, during the code generation.
Finding errors in either the error finder visitor, or the type checker visitor prevents the
interpretation of the code.

24

CHAPTER 3. INFRASTRUCTURE Page 25 of 140.

Interpretation

After the program has passed the contextual analysis, the code can be interpreted.
An interpreter executes a source program immediately without first translating it to
another language. Both recursively and iteratively interpretation is supported, where
recursively interpretation interprets the AST and iterative interpretation interprets a
bytecode made from the AST.

The recursive interpreter is explained in chapter 10 and the iterative interpreter is
explained in chapter 11.

Part II

Semantics

26

CHAPTER 4

Abstract Syntax for groo

In this chapter we will present an abstract syntax used to describe both the operational
semantics and the type system (static semantics). An abstract syntax is a simpler ver-
sion of the concrete syntax, where the main focus is show the structure of the language.

Notice that this abstract syntax will be used to describe both the operational se-
mantics and the static semantics, though some syntactic categories will not be relevant
for both, e.g. type annotations are only relevant in the static semantics.

Table 4.1 lists the syntactic categories, and table 4.2 and 4.3 list the abstract syntax
for groo.

4.1 Syntactic categories in groo

n ∈ Num Numerals
d ∈ Var Variables
e ∈ Expr Expressions
S ∈ Stmt Statements
id ∈ ID Identifiers; names of classes, members, and types
decls ∈ Decls Class or enum declarations
groo ∈ Program Class and enum declarations of a groo program
members ∈Members Field and method declarations
labels ∈ Labels Enum declarations
ve ∈ VarExpr Sequence of variables. Subset of Expr
param ∈ Param Formal parameters
arg ∈ Arg Arguments - actual parameters
op ∈ Op Operators
type ∈ Type Type annotations

Table 4.1: Syntactical categories for groo.

4.2 Abstract syntax

Table 4.2 and 4.3 show the productions for the abstract syntax. In this abstract syntax
we use semicolon to denote newlines, which are used to seperate statements in the
concrete syntax. In order to facilitate variable declarations within statements in the
type system, no sequantial statement production is available. Instead all statements,
except return- and empty-statement, are followed by another statement, which is the
next statement.

It should be noted that blocks are marked by indentation in the concrete syntax.
27

ABSTRACT SYNTAX Page 28 of 140.

groo ::= decls groo

decls ::= class id: members; decls ClassDecl
| enum id: label; decls EnumDecl
| ε EmptyDecl

members ::= type id; members FieldMember
| type id = e; members FieldMemberExt
| type id (param): S; members MethodMember
| ε EmptyMember

S ::= var d ; S DeclStmt
| e ; S ExprStmt
| if e: S1 ; S2 IfStmt
| if e: S1 else: S2 ; S3 IfElseStmt
| while e: S1 ; S2 WhileStmt
| return e ReturnStmt
| ε EmptyStmt

d ::= id = e , d VarDecl-1
| id = e VarDecl-2
| id , d VarDecl-3
| id VarDecl-4

e ::= e1 op e2 BinaryExpr
| op e UnaryExpr
| ve VarExpr
| ve = e VarAssignExpr
| e1(arg) CallExpr
| e1() CallExpr
| (param)-> type : S AnonymExpr
| (e) ParenExpr
| n NumExpr
| True TrueLiteral
| False FalseLiteral

ve ::= id VarAccess
| e . id VarAttAccess

Table 4.2: Abstract syntax for groo.

ABSTRACT SYNTAX Page 29 of 140.

labels ::= id; labels UnassignedLabel
| id = n; labels Label
| ε EmptyLabel

param ::= type id, param SeqParam
| type id Param
| ε EmptyParam

arg ::= e, arg SeqArg
| e Arg
| ε EmptyArg

type ::= type -> type FunctionType
| id , type TupleType
| id SimpleType

op ::= +| − | ∗ |/| << | >> |%
| ||| or |&&| and |!| not | == | <= | >= | < | > | !=

Table 4.3: Abstract syntax for groo, continued.

CHAPTER 5

Operational Semantics

This chapter will formalise language design decisions for executing a groo program. The seman-
tics will be described by giving a transition system for each syntactic category in the syntax.
Environment and auxiliary functions would need to be defined to do this.

5.1 Environments

When evaluating a production the result will need to be saved so it can be reused later.
For this we introduce the environment-store model, as described below.

In the environment-store model, there is a environment, env, that is a partial map
from identifiers to locations, and a store, sto, which is a partial map from locations to
values. The set of all environments, Env, and the set of all stores, Sto, are defined
below.

l ∈ Loc = Z
env ∈ Env = ID ⇀ Loc

sto ∈ Sto = Loc ∪ {next}⇀ Values ∪ Loc

In the definition of Sto next is a special element that maps to the next unused loca-
tion. Elements of Env are denoted by the metavariable env, likewise l is a metavariable
for elements of Loc and sto is a metavariable for elements of Sto. Values mapped to
by Sto are defined as follows:

Primitive = Q ∪ {True, False}
FuntionValue = (Stmt×Param× Env) ∪ (Members,Env)

Objects = Env

v ∈ Values = Primitive ∪ FunctionValue ∪Objects

A primitive can be a rational number or a boolean value True or False. A function
value can be a tuple of a body, parameters and an environment or a tuple of members
and an environment. In both cases the environment is the bindings known at the
time of the declaration of the function. A tuple of members and an environment is a
constructor. An object is a partial mapping of identifiers of its members to locations,
thus an environment. An element of the set of all values, Values, is denoted by the
metavariable v.

By storing code in values, it is possible to do forward declarations, which makes
describing mutual recursion simple. For example when declaring methods it is possi-

30

TRANSITION SYSTEMS IN GROO Page 31 of 140.

ble to declare the method before storing it, thus an environment where all other meth-
ods have been declared can be stored in the tuple of members and an environment,
facilitating mutual recursion.

5.2 Auxiliary Functions

5.2.1 The numeral function

The numeral function is used to get the value of a numeral, and is defined as: N :
Num→ Q. For any numeral it returns the equivalent integer or rational number.

5.2.2 Update Function for Environments

Updating an environment env, so that the identifier id maps to the location l, is de-
noted env[id 7→ l] which is defined as:

env(id′) =

{
env(id′) if id 6= id′

l if id = id′

5.2.3 Update Function for Stores

Updating a store sto, so that the location l maps to the value v, is denoted sto[l 7→ v]
which is defined as:

sto(l′) =

{
sto(l′) if l 6= l′

v if l = l′

5.2.4 The New Location Function

The auxiliary function new : Loc→ Loc is used to find the next unused location given
an unused location l. Since Loc = Z, new is defined new(l) = l + 1. The new function
is used to update the next element of sto, whenever a new location is needed.

5.2.5 The Apply Operator

The apply operator is used for evaluating a binary or unary operation described in the
abstract syntax. Passing an operator and one or two values result in the value after
applying the operator. The definition of Apply can be seen in table 5.1.

5.3 Transition Systems in groo

Transition systems are used to define an operational semantics. A transition system
is defined by a set of configurations and a set of transitions, also called the transition
relation.

A transition system is a triple (Γ,→, T) of configurations Γ, end configurations T ,
and a set of transitions,→. T is a subset of Γ.

TRANSITION SYSTEMS IN GROO Page 32 of 140.

Table 5.1: Apply operator for expressions

Apply(+, v1, v2) = v1 + v2 (5.1)
Apply(−, v1, v2) = v1 − fv2 (5.2)
Apply(∗, v1, v2) = v1 · v2 (5.3)

Apply(/, v1, v2) =
v1

v2

(5.4)

Apply(<<, v1, v2) = v1 · v2 · 2 if {v1, v2} ⊆ Z (5.5)

Apply(>>, v1, v2) = b v1

v2 · 2
c if {v1, v2} ⊆ Z (5.6)

Apply(%, v1, v2) = v1 mod v2 (5.7)
Apply(||, v1, v2) = v1 ∨ v2 (5.8)
Apply(or, v1, v2) = v1 ∨ v2 (5.9)
Apply(&&, v1, v2) = v1 ∧ v2 (5.10)
Apply(and, v1, v2) = v1 ∧ v2 (5.11)
Apply(==, v1, v2) = v1 = v2 (5.12)
Apply(! =, v1, v2) = v1 6= v2 (5.13)
Apply(<, v1, v2) = v1 < v2 (5.14)

Apply(< =, v1, v2) = v1 ≤ v2 (5.15)
Apply(>, v1, v2) = v1 > v2 (5.16)

Apply(> =, v1, v2) = v1 ≥ v2 (5.17)
Apply(−, v) = −v (5.18)
Apply(!, e) = ¬v (5.19)

(5.20)

TRANSITION SYSTEMS IN GROO Page 33 of 140.

The following sections define the transition systems for the relevant categories
from section 4.1.

groo Program, Groo

A groo program is a number of class and enum declarations succeeded with a call to
the method main in the class MainClass. The declarations are evaluated in an empty
environment and store, and the classes and enums are then declared in these. Then
the call MainClass().main() is evaluated in the environment and store resulting from
the declaration transistions, which will run the program.

The transition system for a groo program, (ΓGroo,→groo, TGroo), is therefore defined
by

ΓGroo = Decl ∪ Env × Sto

TGroo = Env × Sto

and transitions are of the form

〈decl〉 →groo 〈env′, sto′〉

and→groo is defined as in table 5.2.

Class and Enum Declarations, Decl

When a class is declared the result is an identifier in the environment that points to
a location where a constructor for the class can be found. A constructor is a tuple of
members and an env wherein other classes and enumerations have been declared. By
storing the constructors in sto and declaring them in env, they can be declared before
they are stored. Thus, mutually recursive constructors are easily achieved. Note that
the type system ensures that constructors are not overwritten.

When an enum is declared the result is an updated environment, where the identi-
fier for the enum points to a location where an object for the enum can be found. This
object is an env from label identifiers to label constants. By declaring enums this way
there is no need to introduce any special rules for handling enums in expressions.

The transition system for declarations, (ΓDecl,→decl, TDecl), is defined by

ΓDecl = Decl× Env × Sto ∪ Env × Sto

TDecl = Env × Sto

Transitions are of the form

〈decl, env, sto〉 →decl 〈env′, sto′〉

and→decl is defined as in table 5.3.

TRANSITION SYSTEMS IN GROO Page 34 of 140.

Class Members, Members

Members can either be fields or methods. Member transitions are used to create an
instance of a class. Declaration results in an updated environment where the identifier
of the members points to a location where the value of the member can be found. Both
fields and members are stored as values on the object. The type system will prevent
methods from being overwritten, so there is no need to take this into account here.

When a field is being declared the value will be the value yielded from evaluating
an expression, if an expression has been provided. If not, there will not be a value at
the location the identifier points to. If a method is being declared the value will be a
function value, which is a tuple of the body of the method, the parameters, and the
environment that every member of the class is declared in.

All members are declared before the values are stored, which enables mutual re-
cursion.

The transition system for members,(ΓMembers,→m, TMembers), is defined by

ΓMembers = Member× Env × Sto ∪ Env × Sto

TDeclC = Env × Sto

Transitions are of the form

env′′ ` 〈members, env, sto〉 →m 〈env′, sto′〉

and→m is defined as in table 5.4.

Statements, Stmt

A statement can both declare new variables, change the value of a variable - through
an expression - and return a value. The return statement can stop the execution of the
next statement.

(ΓStmt,→s, TStmt) is defined by

ΓStmt = Stmt× Env × Sto ∪ (Values ∪ ε)× Env × Sto

TStmt = (Values ∪ ε)× Env × Sto

Transitions are of the form

〈S, env, sto〉 →s 〈v, env′, sto′〉

and→s is defined as in tables 5.5, 5.6 and 5.7.

TRANSITION SYSTEMS IN GROO Page 35 of 140.

Variable Declarations, Var

Variable declarations create new variables in the environment. There is no type anno-
tation, as this will be inferred at the first comparison. A variable declaration can either
have or not have an expression assigned to it. If it has, the expression is evaluated and
the value is stored at a the newly created location for that variable. If not, only the
location is created. Hence the type system for variable declarations, (ΓVar,→d, TVar) is
defined by

ΓVar = Var× Env × Sto ∪ Env × Sto

TVarExpr = Env × Sto

Transitions are of the form

〈d, env, sto〉 →d 〈env′, sto′〉

and→d is defined as in table 5.8.

Expressions, Expr

The result of evaluating an expression is a value and perhaps a changed store. Expres-
sions need to know the environment to look up variables and methods, but cannot
declare new variables.

The instantiation of a class is classified as an expression. Evaluating the name of
the class as an expression will yield the function value of that class. This contains the
members of the class and the environment the class was declared in. Instantiating a
class will therefore result in declaring all members of the class

A method call is also classified as an expression. Evaluating the expression results
in a function value containing the body of the method, the parameters and the en-
vironment of the class. The arguments of the method call and the parameters given
when the method was declared are evaluated together (See transition system for argu-
ments and parameters) resulting in an environment and store containing the parame-
ters with the values of the arguments. The body of the method call is then evaluated
in this environment and stores the results in a value, and a changed env and sto. This
environment is later discarded so that variables declared in the method cannot be used
outside the method call.

The transition system for expressions, (ΓExpr,→e, TExpr), is defined by

ΓExpr = (Expr× Sto) ∪ (Values× Sto)

TExpr = Values× Sto

Transitions are of the form

env ` 〈e, sto〉 →e 〈v, sto′〉

and→e is defined as in table 5.9 and 5.10.

TRANSITION SYSTEMS IN GROO Page 36 of 140.

Variable Expressions, VarExpr

A variable expression can either be a sequence of variables and method calls followed
by an id or just an id. The sequence is an expression, and hence gives an object value.
Evaluating a variable expression returns a location for that id in the environment from
the object value. (ΓVarExpr,→ve, TVarExpr) is defined by

ΓVarExpr = (VarExpr× Sto) ∪ (Loc× Sto)

TVarExpr = Loc× Sto

Transitions are of the form

env ` 〈ve, sto〉 →ve 〈l, sto′〉

and→ve is defined as in table 5.11.

Enum Labels, Label

Enum labels are constants of an enum. An enum constant can either be assigned a
value or not. However, as every constant needs a value one will be assigned automat-
ically. This is done by a giving every transition a value. When declaring an enum the
value, 0, is passed along with the transition, and this value is then incremented when
an new constant is declared. As constants must be in sequence, a variable assigned
by the programmer needs to be greater than the number of unassigned constants be-
tween it and the last-named constant. Constants cannot be assigned the same value.
The transition system for enum labels, (ΓLabel,→l, TLabel), is then defined by

ΓLabel = Label× Env × Sto×Values ∪ Env × Sto

TLabel = Env × Sto

Transitions are of the form

v ` 〈label, env, sto〉 →l 〈env′, sto′〉

and→l is defined as in table 5.12.

Arguments and Parameters, ArgParam

Arguments and parameters are evaluated in one transition, so that the values of the
arguments can be stored at the correct locations of the parameters. An evaluation of an
argument and a parameter subsequently change both the environment and the store.
(ΓArgParam,→ap, TArgParam) is defined by

ΓArgParam = Arg ×Param× Env × Sto ∪ Env × Sto

TRANSITION SYSTEMS IN GROO Page 37 of 140.

Table 5.2: Big-step semantics for groo

[groo] 〈decl, {}, {}〉 →decl 〈env′, sto′′〉
env′′ ` 〈members, env′′, sto′′〉 →m 〈env(3), sto(3)〉 env(4) ` 〈S, sto(3)〉 →s 〈v, sto′〉

〈decl〉 →groo v

env′(mainClass) = (members, env′′)
env(3)(main) = (S, ε, env(4))

TArgParam = Env × Sto

Transitions are of the form

env′ ` 〈arg, param, env, sto〉 →ap 〈env′, sto′〉

and→ap is defined as in table 5.13.

TRANSITION SYSTEMS IN GROO Page 38 of 140.

Table 5.3: Big-step semantics for declarations

[ClassDecl]
〈decl, env′′, sto′′〉 →decl 〈env′, sto(3), v〉

〈class id: members; decl, env, sto〉 →decl 〈env′, sto′〉

where l = sto(next)
sto′′ = sto[next 7→ new(l)]
env′′ = env[id 7→ l]
sto′ = sto(3)[l 7→ (members, env′)]

[EnumDecl] 0 ` 〈label, env′′, sto′′〉 →l 〈env(3), sto(3)〉
〈decl, env′′, sto(4)〉 →decl 〈env′, sto′〉

〈enum id: label; decl, env, sto〉 →decl 〈env′, sto′〉

where l = sto(next)
sto′′ = sto[next 7→ new(l)]
env′′ = env[id 7→ l]
sto(4) = sto(3)[l 7→ env(3)]

[EmptyDecl] 〈ε, env, sto〉 →decl 〈env, sto〉

TRANSITION SYSTEMS IN GROO Page 39 of 140.

Table 5.4: Big-step semantics for members

[FieldMember]
env(3) ` 〈members, env′′, sto′′〉 →m 〈env′, sto′〉

env(3) ` 〈idt id;members, env, sto〉 →m 〈env′, sto′〉

Where l = sto(next)
env′′ = env[id 7→ l]
sto′′ = sto[next 7→ new(l)]

[FieldMemberExt] env(3) ` 〈members, env′′, sto′′〉 →m 〈env′, sto(3)〉
env(3) ` 〈e, sto(3)〉 →e 〈v, sto(4)〉

env(3) ` 〈idt id=e;members, env, sto〉 →m 〈env′, sto′〉

Where l = sto(next)
env′′ = env[id 7→ l]
sto′′ = sto[next 7→ new(l)]
sto′ = sto(4)[l 7→ v]

[MethodMember]
env(3) ` 〈members, env′′, sto′〉 →m 〈env′, sto′′〉

env(3) ` 〈idt id(param) :S;members, env, sto〉 →m 〈env′, sto′〉

Where l = sto(next)
sto′ = sto[next 7→ new(l)]
env′′ = env[id 7→ l]
sto′ = sto′′[l 7→ 〈S, param, env′〉]

[EmptyMember] env′ ` 〈ε, env, sto〉 →m 〈env, sto〉

TRANSITION SYSTEMS IN GROO Page 40 of 140.

Table 5.5: Big-step semantics for statements

[DeclStmt]
〈d, env, sto〉 →d 〈env′′, sto′′〉 〈S, env′′, sto′′〉 →s 〈env′, sto′〉

〈var d;S, env, sto〉 →s 〈ε, env′, sto′〉

[ExprStmt]
env ` 〈e, sto〉 →e 〈v, sto′′〉 〈S, env, sto′′〉 →s 〈env′, sto′〉

〈e, env, sto〉 →s 〈ε, env′, sto′〉

[IfStmt-1] env ` 〈e, sto〉 →e 〈v′, sto′′〉 〈S1, env, sto
′′〉 →s 〈v′′, env′′, sto(3)〉

〈S2, env
′′, sto(3)〉 →s 〈v, env′, sto′〉

〈if e : S1;S2, env, sto〉 →s 〈v, env, sto′〉

if v′ = True and v′′ = ε

[IfStmt-2]
env ` 〈e, sto〉 →e 〈v′, sto′′〉 〈S1, env, sto

′′〉 →s 〈v, env′, sto′〉
〈if e : S1;S2, env, sto〉 →s 〈v, env, sto′〉

if v′ = True and v 6= ε

[IfStmt-3]
env ` 〈e, sto〉 →e 〈v′, sto′′〉 〈S2, env, sto

′′〉 →s 〈v, env′, sto′〉
〈if e : S1;S2, env, sto〉 →s 〈v, env, sto′〉

if v′ = False

TRANSITION SYSTEMS IN GROO Page 41 of 140.

Table 5.6: Big-step semantics for statements continued

[IfElseStmt-1] env ` 〈e, sto〉 →e 〈v′, sto′′〉 〈S1, env, sto
′′〉 →s 〈v′′, env′′, sto(3)〉

〈S3, env
′′, sto(3)〉 →s 〈v, env′, sto′〉

〈if e : S1 else S2;S3, env, sto〉 →s 〈v, env, sto′〉

if v′ = True and v′′ = ε

[IfElseStmt-2]
env ` 〈e, sto〉 →e 〈v′, sto′′〉 〈S1, env, sto

′′〉 →s 〈v, env′, sto′〉
〈if e : S1 else S2;S3, env, sto〉 →s 〈v, env, sto′〉

if v′ = True and v 6= ε

[IfElseStmt-3] env ` 〈e, sto〉 →e 〈v′, sto′′〉 〈S2, env, sto
′′〉 →s 〈v′′, env′′, sto(3)〉

〈S3, env
′′, sto(3)〉 →s 〈v, env′, sto′〉

〈if e : S1 else S2;S3, env, sto〉 →s 〈v, env, sto′〉

if v′ = False and v′′ = ε

[IfElseStmt-4]
env ` 〈e, sto〉 →e 〈v′, sto′′〉 〈S2, env, sto

′′〉 →s 〈v, env′, sto′〉
〈if e : S1 else S2;S3, env, sto〉 →s 〈v, env, sto′〉

if v′ = False and v 6= ε

[WhileStmt-1] env ` 〈e, sto〉 →e 〈v′, sto′′〉 〈S1, env, sto
′′〉 →s 〈v′′, env′, sto(3)〉

〈while e : S1;S2, env, sto
(3)〉 →s 〈v, env′′, sto′〉

〈while e : S1;S2, env, sto〉 →s 〈v, env, sto′〉

if v′ = True and v′′ = ε

[WhileStmt-2]
env ` 〈e, sto〉 →e 〈v′, sto′′〉 〈S1, env, sto

′′〉 →s 〈v, env′, sto′〉
〈while e : S1;S2, env, sto〉 →s 〈v, env, sto′〉

if v′ = True and v 6= ε

TRANSITION SYSTEMS IN GROO Page 42 of 140.

Table 5.7: Big-step semantics for statements continued

[WhileStmt-3]
env ` 〈e, sto〉 →e 〈v′, sto′′〉 〈S2, env, sto

′′〉 →s 〈v, env′, sto′〉
〈while e : S1;S2, env, sto〉 →s 〈v, env, sto′〉

if v′ = False

[ReturnStmt]
env ` 〈e, sto〉 →e 〈v, sto′〉

〈return e, env, sto〉 →s 〈v, env, sto′〉

[EmptyStmt] 〈ε, env, sto〉 →s 〈ε, env, sto〉

TRANSITION SYSTEMS IN GROO Page 43 of 140.

Table 5.8: Big-step semantics for declaration of variables

[VarDecl-1]
env ` 〈e, sto〉 →e 〈v, sto′′〉 〈d, env′′, sto(3)〉 →d 〈env′, sto′〉

〈id=e, d, env, sto〉 →d 〈env′, sto′〉

Where l = sto′′(next)
env′′ = env[id 7→ l]
sto(3) = sto′′[l 7→ v][next 7→ new(l)]

[VarDecl-2]
env ` 〈e, sto〉 →e 〈v, sto′′〉
〈id=e, env, sto〉 →d 〈env′, sto′〉

Where l = sto′′(next)
env′ = env[id 7→ l]
sto′ = sto′′[l 7→ v][next 7→ new(l)]

[VarDecl-3]
〈d, env′′, sto′′〉 →d 〈env′, sto′〉
〈id, d, env, sto〉 →d 〈env′, sto′〉

Where l = sto(next)
env′′ = env[id 7→ l]
sto′′ = sto[next 7→ new(l)]

[VarDecl-4] 〈id, env, sto〉 →d 〈env′, sto′〉

Where l = sto(next)
env′ = env[id 7→ l]
sto′ = sto[next 7→ new(l)]

TRANSITION SYSTEMS IN GROO Page 44 of 140.

Table 5.9: Big-step semantics for expressions

[BinaryExpr]
env ` 〈e1, sto〉 →e 〈v′′sto′′〉 env ` 〈e2, sto′′〉 →e 〈v′sto′〉

env ` 〈e1 op e2, sto〉 →e 〈v, sto′〉

where v = Apply(op, v′′, v′)

[UnaryExpr]
env ` 〈e, sto〉 →e 〈v′, sto′〉
env ` 〈op e, sto〉 →e 〈v, sto′〉

where v = Apply(op, v′)

[ConstructExpr]
env ` 〈e, sto〉 →e 〈v′, sto′′〉 env′′ ` 〈members, env′′, sto′′〉 →m 〈env′, sto′〉

env ` 〈e(), sto〉 →e 〈v, sto′〉

If v′ = (members, env′′) and v = env′

[CallExpr] env ` 〈e, sto〉 →e 〈v′, sto′′〉 env ` 〈param, arg, env′′, sto′′〉 →pa 〈env(3), sto(3)〉
〈S, env(3), sto(3)〉 →s 〈v, env′, sto′〉
env ` 〈e(arg), sto〉 →e 〈v, sto′〉

If v′ = (S, param, env′′)

[VarAssignExpr]
env ` 〈e, sto〉 →e 〈v, sto′′〉 env ` 〈ve, sto′′〉 →ve 〈l, sto(3)〉

env ` 〈ve=e, sto〉 →e 〈v, sto(3)[l 7→ v]〉

[VarExpr]
env ` 〈ve, sto〉 →ve 〈l, sto′〉
env ` 〈ve, sto〉 →e 〈v, sto′〉

Where v = sto′(l)

TRANSITION SYSTEMS IN GROO Page 45 of 140.

Table 5.10: Big-step semantics for expressions continued

[ParenExpr]
env ` 〈e, sto〉 →e 〈v, sto′〉
env ` 〈(e), sto〉 →e 〈v, sto′〉

[AnonymExpr] env ` 〈(param)-> type : S, sto〉 →e 〈v, sto〉

where v = (S, param, env)

[NumExpr] env ` 〈n, sto〉 →e 〈v, sto′〉

where v = N [[v]]

[TrueLiteral] env ` 〈True, sto〉 →e 〈True, sto〉

[FalseLiteral] env ` 〈False, sto〉 →e 〈False, sto〉

Table 5.11: Big-step semantics for variable expressions

[VarAttAccess]
env ` 〈e, sto〉 →e 〈v′, sto′〉
〈e.id, sto〉 →ve 〈l, sto′〉

Where v′ = env′ and l = env′(id)

[VarAccess] env ` 〈id, sto〉 →ve 〈l, sto〉

Where l = env(id)

TRANSITION SYSTEMS IN GROO Page 46 of 140.

Table 5.12: Big-step semantics for labels

[UnassignedLabel]
v′′ ` 〈label, env′′, sto′′〉 →l 〈env′, sto′〉
v ` 〈id; label, env, sto〉 →l 〈env′, sto′〉

where v′′ = v + 1
l = sto(next)
env′′ = env[id 7→ l]
sto′′ = sto[l 7→ v][next 7→ new(l)]

[Label]
v(3) ` 〈label, env′′, sto′′〉 →l 〈env′, sto′〉

v ` 〈id = n; label, env, sto〉 →l 〈env′, sto′〉

where N [[n]] = v′′ and v′′ ≥ v
v(3) = v′′ + 1
l = sto(next)
env′′ = env[id 7→ l]
sto′′ = sto[l 7→ v′′][next 7→ new(l)]

[EmptyLabel] v ` 〈ε, env, sto〉 →l 〈env, sto〉

TRANSITION SYSTEMS IN GROO Page 47 of 140.

Table 5.13: Big-step semantics for arguments and parameters

[SeqArgParam] env(3) ` 〈e, sto〉 →e 〈v, sto′′〉
env(3) ` 〈param, arg, env′′, sto(3)〉 →pa 〈env′, sto′〉

env(3) ` 〈idt id, param, e,arg, env, sto〉 →pa 〈env′, sto′〉

Where l = sto′′(next)
env′′ = env[id 7→ l]
sto(3) = sto′′[l 7→ v][next 7→ new(l)]

[SeqArgParam]
env′′ ` 〈e, sto〉 →e 〈v, sto′′〉

env′′ ` 〈idt id, e, env, sto〉 →pa 〈env′, sto′〉

Where l = sto′′(next)
env′ = env[id 7→ l]
sto′ = sto′′[l 7→ v][next 7→ new(l)]

[EmptyArgParam] env′ ` 〈ε, ε, env, sto〉 →pa 〈env, sto〉

CHAPTER 6

Groo Type System

This chapter presents the static semantics for groo, or rather, the type system. The purpose of
this is to formalise the rules for deciding if a groo program is type correct.

6.1 Definition of Types

To denote types, a new syntactic category called Types is introduced. Elements in
Types will be denoted by the metavariable T . A subset of types is the primitive types,
Primitives. Elements of Primitives are denoted by the metavariable Prim.

The productions for Types are listed in table 6.1. (T1 → T2) denotes a function type
with T1 as the type of the arguments, and T2 as the return type. T1×T2 denotes a tuple
of types. This is used to create a function type with multiple parameters. (id,members)
denotes the type that a class with the name id and body members declares. (id, labels)
denotes the type that an enum with the name id and body labels declares.

Prim ::= int | float | bool | void
T ::= Prim | T1 × T2 | (T1 → T2) | (id,members)| (id, labels)

Table 6.1: Abstract syntax for types.

6.2 Variable Type

The set VariableType is defined below, which is used in environments to denote
whether a declared variable is read-only. An element of VariableType is denoted
by the metavariable vt. Elements of the auxiliary set P({Read,Write}) are denoted
by the metavariable R. VariableType allows methods and constructors to be treated
as read-only function variables. This emphasises the concept of how methods are clo-
sures in groo.

R ∈ P({Read,Write})
vt ∈ VariableType = P({Read,Write})×Types

6.3 Environments

In groo, an id can either be a variable, a type, or both. For example, this applies to
classes where the name of the class is both the class type and the constructor type.
This results in a nominal type system. Therefore we introduce two environments:

48

APPLYT FUNCTION Page 49 of 140.

• a type declaration environment to hold all type declarations,

• and a variable declaration environment to hold variables and their types.

The type declaration environment is defined as:

dt ∈ DT = ID ⇀ Types

and the variable declaration environment as:

dv ∈ DV = ID∪{Tret, impRet}⇀ P({Read,Write})×Types∪Types∪{True, False}

Where Tret and impRet are special elements. Tret is used to find the return type and
impRet is used to determine if an empty statement constitutes an implicit void return.
E.g. composite statements’ impRet is set to false in dv for the first statement, and true
in the last statement. The result of this is that impRet only is true for the last statement
in a scope. Likewise, this is done for other statements which have more than one
statement as their immediate constituents.

Another approach to this could be to let statements return a type and then compare
this in call expressions and alike. However, implicit return at different scopes makes
it complicated, and to remove impRet would double the number of rules. Because ε at
the outer most scope of a function means an implicit void return, and in every other
scope in that function, ε means no return. ε is therefore treated differently at different
scopes. Removing Tret would complicate the side conditions of composite statements
such as if and while unnecessarily. Thus we have chosen to use the slightly awkward
special elements Tret and impRet.

6.3.1 Standard Environment

The standard environment, std ∈ DT , contains the primitive types. It is defined as:

std(int) = Int

std(float) = Float

std(bool) = Bool

std(void) = V oid

The standard environment is used as a type declaration, dt, in the type rule for a groo
program.

6.4 Auxiliary Functions

A number of auxiliary functions that are needed for the type judgements of groo.

6.5 ApplyT Function

TheApplyT function takes an operator, one or two types and returns a type. TheApplyT

function is defined as in table 6.2.

APPLYT FUNCTION Page 50 of 140.

Table 6.2: ApplyT function

ApplyT (+, Int, Int) = Int (6.1)
ApplyT (+, F loat, F loat) = Float (6.2)

ApplyT (+, String, String) = String (6.3)
ApplyT (−, Int, Int) = Int (6.4)

ApplyT (−, F loat, F loat) = Float (6.5)
ApplyT (∗, Int, Int) = Int (6.6)

ApplyT (∗, F loat, F loat) = Float (6.7)
ApplyT (/, Int, Int) = Int (6.8)

ApplyT (/, F loat, F loat) = Float (6.9)
ApplyT (<<, Int, Int) = Int (6.10)
ApplyT (>>, Int, Int) = Int (6.11)
ApplyT (%, Int, Int) = Int (6.12)

ApplyT (||, Bool, Bool) = Bool (6.13)
ApplyT (or, Bool, Bool) = Bool (6.14)
ApplyT (&&, Bool, Bool) = Bool (6.15)
ApplyT (and, Bool, Bool) = Bool (6.16)

ApplyT (==, T, T) = Bool (6.17)
ApplyT (! =, T, T) = Bool (6.18)

ApplyT (<, Int, Int) = Int (6.19)
ApplyT (<,F loat, F loat) = Float (6.20)
ApplyT (< =, Int, Int) = Int (6.21)

ApplyT (< =, F loat, F loat) = Float (6.22)
ApplyT (>, Int, Int) = Int (6.23)

ApplyT (>,F loat, F loat) = Float (6.24)
ApplyT (> =, F loat, F loat) = Float (6.25)

ApplyT (> =, Int, Int) = Int (6.26)
ApplyT (−, Int) = Int (6.27)

ApplyT (−, F loat) = Float (6.28)
ApplyT (!, Bool) = Bool (6.29)

APPLYT FUNCTION Page 51 of 140.

6.5.1 The Set Function

set(T) is a function used to check whether a value is of type Int or Float. The function
is defined as:

set(Int) = Z
set(Float) = Q

6.5.2 Domain of Partial Functions

D(f) denotes the domain of the partial function f , i.e. the domain of a dt ∈ DT is the
set of ids declared by the type declaration environment, dt. This is used to ensure that
for a newly declared variable, an id of the same name is not already declared.

6.5.3 Update Function for Type Declaration Environments

Updating a type declaration environment is denoted dt[id 7→ T] and the resulting type
declaration environment is defined as:

dt′(x) =

{
dt(x) if id 6= x
T if id = x

6.5.4 Update Function for Variable Declaration Environments

Updating a variable declaration environment is denoted dv[id 7→ vt] and the resulting
variable declaration environment is defined as:

dv′(x) =

{
dv(x) if id 6= x
vt if id = x

6.5.5 dt from Type Declarations

To make a dt (type declaration environment) from a set of type declarations the fol-
lowing partial auxiliary function is introduced.

dtd(ε, dt) = dt

dtd(class id : members ; decls, dt) = dtd(decls, dt[id 7→ (id,members)])

dtd(enum id : labels ; decls, dt) = dtd(decls, dt[id 7→ (id, labels)])

This function is called recursively, continously updating dt with the id pointing to a
type declaration, creating a new type. The type of a class is a tuple of its name and its
members, as this is a nominal type system.

APPLYT FUNCTION Page 52 of 140.

6.5.6 dv from Type Declarations

To make a dv from type declarations the following partial auxiliary function is intro-
duced. This function is used to make constructor types.

dvt(ε, dv) = dv

dvt(class id : members ; decls) = dvt(decls, dv[id 7→ ({Read}, (V oid→ (id,members)))])

dvt(enum id : labels ; decls) = dvt(decls, dv[id 7→ ({Read}, (V oid→ (id, labels)))])

The declarations of a class implicitly creates a read-only variable which is the construc-
tor of the class. Therefore it has the type from: void to the type of the class.

6.5.7 dv From Variable Declarations

To make a dv from variable declarations the following partial auxiliary function is
introduced. Note that this function is not defined for the given parameters if the side
condition is not ok or evaluates to a type, for statement and expression side conditions
respectively.

dvd(id = e, S, dt, dv) = dv[id 7→ ({Read,Write}, T)] ,where dt, dv ` 〈e〉 : T

dvd(id = e, d, S, dt, dv) = dvd(d, S, dt, dv[id 7→ ({Read,Write}, T)]),where dt, dv ` 〈e〉 : T

dvd(id, S, dt, dv) = dv[id 7→ ({Read,Write}, T)]

,where dt, dv[id 7→ T] ` 〈S〉 : ok

dvd(id, d, S, dt, dv) = dvd(d, S, dt, dv[id 7→ ({Read,Write}, T)])

,where dt, dv[id 7→ T] ` 〈S〉 : ok

This auxiliary function is used to give types to variables when they are declared. If
the variable is assigned an expression, the id will get the type of the expression. If it
is not assigned any expression, it is given a type such that the subsequent statements
will be well typed.

6.5.8 Tp From Parameter Declarations

To make a Tp from parameter declarations the following partial auxiliary function is
introduced.

Tpp(type id, param, dt) = Tpp(param, Tt(type, dt), dt)

Tpp(type id , param, T, dt) = Tpp(param, T × Tt(type, dt), dt)

Tpp(type id, T, dt) = T × Tt(type, dt)

Tpp(ε, dt) = V oid

Tpp(type id, dt) = Tt(type, dt)

The first is used to begin a tuple, where the function calls itself with the remaining
parameters and a tuple of the type of the first parameter. The second adds the type of

APPLYT FUNCTION Page 53 of 140.

parameter to the given tuple, and calls the function again. The third adds the type of
the last parameter to the tuple and returns it.

6.5.9 dv From Parameter Declarations

To make a dv from parameter declarations the following partial auxiliary function is
introduced.

dvp(type id, dt, dv) = dv[id 7→ ({Read,Write}, Tt(type, dt))]

dvp(type id , param, dt, dv) = dvp(param, dt, dv[id 7→ ({Read,Write}, Tt(type, dt))])

Each parameter is assigned a type in dv.

6.5.10 dv From Label Declarations

To make a dv from label declarations the following partial auxiliary function is intro-
duced.

dvl(id, labels, dt, dv) = dv[id 7→ ({Read}, dt(Int))]
dvl(id =n, labels, dt, dv) = dvp(labels, dt, dv[id 7→ ({Read}, dt(Int))])

Each labels is assigned a integer type in dv.

6.5.11 dv From Member Declarations

To make a dv from member declarations the following partial auxiliary function is
introduced.

dvm(ε, dt, dv) = dv

dvm(type id; members, dt, dv) = dvm(members, dt, dv[id 7→ vt])

, where vt = ({Read,Write}, Tt(type, dt))

dvm(type id = e; members, dt, dv) = dvm(members, dt, dv[id 7→ vt])

, where vt = ({Read,Write}, Tt(type, dt))

dvm(type id (param) : S ; members, dt, dv) = dvm(members, dt, dv[id 7→ ({Read}, T)])

, where T = (Tpp(param, dt)→ Tt(type, dt))

This auxiliary function is used to give types to members. Fields are given the type de-
clared, and methods are given a tuple of the types of the parameters and the methods
return type.

6.5.12 Tp From Arguments

To make a Tp from arguments the following auxiliary partial function is introduced.
This function is only defined for these arguements and if the side conditions are ok or
evaluates to a type for the statement or expression side conditions respectively.

TYPE JUDGEMENTS Page 54 of 140.

Tpa(e, dt, dv, T1) = T1 × T2 where dt, dv ` 〈e〉 : T2

Tpa(e, dt, dv) = T where dt, dv ` 〈e〉 : T
Tpa(ε, dt, dv) = V oid

Tpa(e , arg, dt, dv) = Tpa(arg, dt, dv, T) where dt, dv ` 〈e〉 : T
Tpa(e , arg, dt, dv, T1) = Tpa(arg, dt, dv, T1 × T2) where dt, dv ` 〈e〉 : T2

Creating a tuple from arguments is somewhat like as from parameters, the only
difference is that the type is the type of the expression.

6.5.13 T From Type Annotations

To make a type,T , from type annotations the following partial auxiliary function is
introduced.

Tt(id, dt) = dt(id)

Tt(id, dt, Tp) = tp× dt(id)

Tt(id, type, dt) = Tt(type, dt, dt(id))

Tt(id, type, dt, Tp) = Tt(type, dt, Tp× dt(id))

Tt(type1->type2, dt) = (Tt(type1, dt)→ Tt(type2, dt))

6.6 Type Judgements

This section will list the type judgements for groo. The type of expressions and variable expres-
sions are T ∈ Types, and are well typed, ok, if they comply with the type rules.

groo Program

The type judgement
〈groo〉 : ok

means that the program is a well typed groo program. A program is a groo program
if its declarations are well typed. The type rule can be seen in table 6.3.

Declarations

The type judgement
dt, dv ` 〈decls〉 : ok

means that given the variable declarations, dv, and the type declarations, dt, the dec-
laration decls are well typed. A declaration is well typed if its members and are well
typed and that the type has not been overwritten by an other declaration in the aux-
iliary function. The type rules can be seen in table 6.4 where we use the above men-
tioned auxiliary function to declare the type of the declarations.

TYPE JUDGEMENTS Page 55 of 140.

Members

The type judgement
dt, dv ` 〈members〉 : ok

means that given the type declarations, dt, and the variable declarations, dv, the mem-
ber is well typed. Field members are well typed if their declared type and the type of
the assigned expression - if any - are both equal to the type associated with the id of
the field xin dv.

Method members are well typed if their body and parameters are well typed and
that their types are declared in dt.

The type rules for members can be seen in table 6.5.

Statements

The type judgement
dt, dv ` 〈S〉 : ok

means that given type declarations, dt, and variable declarations, dv, the statement S
is type correct. The type rules for statements can be seen in table 6.6. For statements
with conditions, the conditional expression must have a boolean type. In the return
statement, the expression must have a type, and this type must compare to the element
Tret in dv maps to. An empty statement is well typed if the return type has been set to
V oid or there is no implicit return.

Variable Declarations

The type judgement
dt, dv ` 〈d〉 : ok

means that given type declarations, dt, and variable declarations dv, the variable dec-
laration d is well typed. A variable declaration is well typed if the expressions have a
type, and if the id has not been declared before, i.e id /∈ D(dv). The type rules can be
seen in table 6.7.

Expressions

The type judgement for expressions

dt, dv ` 〈e〉 : T

means that given type declarations dt and variable declarations dv the expression e has
type T. The type rules given in table 6.8 and 6.9.

TYPE JUDGEMENTS Page 56 of 140.

Variable Expressions

The type judgement for variable expressions

dt, dv ` 〈ve〉 : vt

means that given the type declarations, dt, and the variable declartions, dv, the variable
expression, ve, has variable type vt indicating whether it is read, write or read-write
and the type. This type is found by looking up id in dv. Table 6.10 lists the type rules.

Arguments

The type judgement for arguments

dt, dv ` 〈arg〉 : ok

means that given type declarations, dt, and variable declarations, dv, the argument is
well typed. An argument is well typed if the expression has a type. The type rules can
be seen in table 6.11

Parameters

The type judgement for parameters

dt, dv ` 〈param〉 : ok

means that given type declarations, dt, and variable declarations, dv, the parameter is
well typed. A parameter is well typed if the declared type is in dt and id /∈ D(dv). That
is, the type is declared whereas the variable is not. The type rules can be seen in table
6.12.

Labels

The type judgement for labels

dt, dv ` 〈labels〉 : ok

means that given type declarations, dt, and variable declarations, dv, the label is well
typed. A label is well typed if it is assigned an integer. The type rules can be seen in
table 6.13

Types

The type judgement for types
dt ` 〈type〉 : ok

means that given the type declarations, dt, the type annotation is well typed if id is
declared in dt. The type rules can been seen in table 6.14

TYPE JUDGEMENTS Page 57 of 140.

Table 6.3: Type judgements for groo

[groo]
dt′, dv′ ` 〈decls〉 : ok

〈decls〉 : ok

where dt′ = dtd(decls, std) and dv′ = dvt(decls, {})

Table 6.4: Type judgements for declarations

[ClassDecl]
dt, dv′ ` 〈members〉 : ok dt, dv ` 〈decls〉 : ok

dt, dv ` 〈class id: members; decls〉 : ok

where dv′ = dvm(members, dt, dv), dt(id) = (id,members)
and dv(id) = ({Read}, (V oid→ (id,members)))

[EnumDecl]
dt, dv ` 〈labels〉 : ok dt, dv ` 〈decls〉 : ok

dt, dv ` 〈enum id: labels; decls〉 : ok

where dt(id) = (id→ labels)
and dv(id) = ({Read}, (V oid→ (id, labels)))

[EmptyDecl] dt, dv ` 〈ε〉 : ok

TYPE JUDGEMENTS Page 58 of 140.

Table 6.5: Type judgements for members

[FieldMember]
dt, dv ` 〈members〉 : ok

dt, dv ` 〈type id;members〉 : ok

if dv(id) = ({Read,Write}, Tt(type, dt))

[FieldMemberExt]
dt, dv ` 〈e〉 : T dt, dv ` 〈members〉 : ok

dt, dv ` 〈type id = e;members〉 : ok

if dv(id) = ({Read,Write}, Tt(type, dt)) and Tt(type, dt) = T

[MethodMember]
dt, dv ` 〈param〉 : ok dt, dv′ ` 〈S〉 : ok dt, dv ` 〈members〉 : ok

dt, dv ` 〈type id(param) : S;members〉 : ok

where dv′ = dvp(param, dt, dv)[Tret 7→ Tt(type, dt)][impRet 7→ True]
and dv(id) = ({Read}, (Tpp(param, dt)→ Tt(type, dt)))

[EmptyMember] dt, dv ` 〈ε〉 : ok

TYPE JUDGEMENTS Page 59 of 140.

Table 6.6: Type judgements for statements

[DeclStmt]
dt, dv ` 〈d〉 : ok dt, dv′ ` 〈S〉 : ok

dt, dv ` 〈var d;S〉 : ok

where dv′ = dvd(d, dt, dv)

[ExprStmt]
dt, dv ` 〈e〉 : T dt, dv ` 〈S〉 : ok

dt, dv ` 〈e;S〉 : ok

[IfStmt]
dt, dv ` 〈e〉 : Bool dt, dv′ ` 〈S1〉 : ok dt, dv ` 〈S2〉 : ok

dt, dv ` 〈if e : S1;S2〉 : ok

where dv′ = dv[impRet 7→ False]

[IfElseStmt]
dt, dv ` 〈e〉 : Bool dt, dv′ ` 〈S1〉 : ok dt, dv′ ` 〈S2〉 : ok dt, dv ` 〈S3〉 : ok

dt, dv ` 〈if e : S1 else S2;S3〉 : ok

where dv′ = dv[impRet 7→ False]

[WhileStmt]
dt, dv ` 〈e〉 : Bool dt, dv′ ` 〈S1〉 : ok dt, dv ` 〈S2〉 : ok

dt, dv ` 〈while e : S1;S2〉 : ok

where dv′ = dv[impRet 7→ False]

[ReturnStmt]
dt, dv ` 〈e〉 : T

dt, dv ` 〈return e〉 : ok

where dv(Tret) = T

[EmptyStmt] dt, dv ` 〈ε〉 : ok

where either dv(Tret) = V oid or dv(impRet) = False

TYPE JUDGEMENTS Page 60 of 140.

Table 6.7: Type judgements for variable declarations

[VarDecl-1]
dt, dv ` 〈e〉 : T dt, dv[id 7→ ({Read,Write}, T)] ` 〈d〉 : ok

dt, dv ` 〈id = e, d〉 : ok

where id /∈ D(dv)

[VarDecl-2]
dt, dv ` 〈e〉 : T

dt, dv ` 〈id = e〉 : ok

where id /∈ D(dv)

[VarDecl-3]
dt, dv[id 7→ ({Read,Write}, V oid)] ` 〈d〉 : ok

dt, dv ` 〈id, d〉 : ok

where id /∈ D(dv)

[VarDecl-4] dt, dv ` 〈id〉 : ok

where id /∈ D(dv)

TYPE JUDGEMENTS Page 61 of 140.

Table 6.8: Type judgements for expressions

[BinaryExpr]
dt, dv ` 〈e1〉 : T ′ dt, dv ` 〈e2〉 : T ′′

dt, dv ` 〈e1 op e2〉 : T

where T = ApplyT (op, T ′, T ′′)

[UnaryExpr]
dt, dv ` 〈e〉 : T ′

dt, dv ` 〈op e〉 : T

where T = ApplyT (op, T ′)

[VarExpr]
dt, dv ` 〈ve〉 : vt

dt, dv ` 〈ve〉 : T

where vt = (R, T) and Read ∈ R

[AssignExpr]
dt, dv ` 〈ve〉 : vt dt, dv ` 〈e〉 : T

dt, dv ` 〈ve = e〉 : T

where vt = (R, T) and Write ∈ R

[CallExpr]
dt, dv ` 〈e〉 : T ′ dt, dv ` 〈arg〉 : ok

dt, dv ` 〈e(arg)〉 : T

where T ′ = (Tp→ T) and Tpa(arg, dt, dv) = Tp

[AnonymExpr]
dt, dv ` 〈param〉 : ok dt, dv′ ` 〈S〉 : ok

dt, dv ` 〈(param)->id : S〉 : T

where T = (Tpp(param), dt, dv)→ dt(id))
and dv′ = dvp(param, dt, dv)[Tret 7→ dt(id)][impRet 7→ True]

TYPE JUDGEMENTS Page 62 of 140.

Table 6.9: Type judgements for expressions continued

[ParenExpr]
dt, dv ` 〈e〉 : T

dt, dv ` 〈(e)〉 : T

[NumLiteral-1] dt, dv ` 〈n〉 : Int

where n ∈ set(Int)

[NumLiteral-2] dt, dv ` 〈n〉 : Float

where n ∈ set(Float)

[TrueLiteral] dt, dv ` 〈True〉 : Bool

[FalseLiteral] dt, dv ` 〈False〉 : Bool

TYPE JUDGEMENTS Page 63 of 140.

Table 6.10: Type judgements for variable expressions

[VarAccess] dt, dv ` 〈id〉 : vt

where dv(id) = vt

[VarAttAccess1]
dt, dv ` 〈e〉 : T

dt, dv ` 〈e.id〉 : vt

where T = (id,members),
dv′ = dvm(members, dt, dv) and
dv′(id) = vt

[VarAttAccess2]
dt, dv ` 〈e〉 : T

dt, dv ` 〈e.id〉 : vt

where T = (id, labels),
dv′ = dvl(labels, dt, dv) and
dv′(id) = vt

Table 6.11: Type judgements for arguments

[SeqArg]
dt, dv ` 〈e〉 : T dt, dv ` 〈arg〉 : ok

dt, dv ` 〈e, arg〉 : ok

[Arg]
dt, dv ` 〈e〉 : T

dt, dv ` 〈e〉 : ok

[EmptyArg] dt, dv ` 〈ε〉 : ok

TYPE JUDGEMENTS Page 64 of 140.

Table 6.12: Type judgements for parameters

[SeqParam]
dt ` 〈type〉 : ok dt, dv[id 7→ Tt(type, dt)] ` 〈param〉 : ok

dt, dv ` 〈type id, param〉 : ok

where id /∈ D(dv)

[Param]
dt ` 〈type〉 : ok

dt, dv ` 〈type id〉 : ok

where id /∈ D(dv)

[EmptyParam] dt, dv ` 〈ε〉 : ok

Table 6.13: Type judgements for labels

[UnassignedLabel]
dt, dv[id 7→ dt(Int)] ` 〈labels〉 : ok

dt, dv ` 〈id; labels〉 : ok

where id /∈ D(dv)

[Label]
dt, dv[id 7→ dt(Int)] ` 〈labels〉 : ok

dt, dv ` 〈id = n; labels〉 : ok

where id /∈ D(dv) and n ∈ set(Int)

[EmptyLabel] dt, dv ` 〈ε〉 : ok

TYPE JUDGEMENTS Page 65 of 140.

Table 6.14: Type judgements for type

[FunctionType]
dt ` 〈type1〉 : ok dt ` 〈type2〉 : ok

dt ` 〈type1->type2〉 : ok

[TupleType]
dt ` 〈type〉 : ok

dt ` 〈id, type〉 : ok

where id ∈ D(dt)

[SimpleType] dt ` 〈id〉 : ok

where id ∈ D(dt)

Part III

Syntax Analysis

66

CHAPTER 7

Lexing

The purpose of the lexical analysis is to translate the written lexemes into tokens that
can be used in the further analysis. A deterministic finite state (DFA) algorithm can be
used to do this.

7.1 Deterministic Finite State Automata

A deterministic finite state automaton (DFA) is a simple machine that recognises a
regular language. It is a 5-tuple, (Q, Σ, δ, q0, F), where:

• Q is a finite set of states

• Σ is the alphabet, consisting of a finite set of symbols

• δ is the transition function, (δ : Q x Σ→ Q)

• q0 is the start state, q0 ∈ Σ

• F is the set of accept states, F ⊆ Q

A DFA takes a string over the alphabet Σ as input. The transition function δ takes
into account the current state and input symbol and changes the state until the end of
the input. If, at the end of the string, the current state is an accept state (qcurrent ∈ F)
the DFA accepts the string - that is, the string is an element of the language this DFA
recognises.

7.1.1 What are regular expressions?

Regular expressions are a method of describing regular languages.
A regular expression is defined by six clauses, so that R is a regular expression if R

is one of the following:

1. a for some symbol in the alphabet Σ

2. ε

3. ∅

4. (R1 ∪R2), where R1 and R2 are regular expressions

5. (R1 ◦R2), where R1 and R2 are regular expressions

6. (R1)
∗, where R1 is a regular expression

67

CONSTRUCTING A DFA Page 68 of 140.

Note that R1 and R2 are both smaller than R, ensuring that this definition is not
circular [Sipser, 2006].

Regular expressions are a concise way of describing patterns. In the context of
lexical analysis, regular expressions are used to recognise lexical items. Additionally,
regular expressions are relatively easy for humans to write, read, and understand.

In the lexer generator built for constructing groo, regular expressions are used to
describe different parts of the language in small blocks. For example, the reserved
word while has its own regular expression (which is, quite simply, {while}).

Every regular expression entered into the lexer-generator has an accept rule. When
a string that is described by a particular regular expression is entered into the lexer-
generator, the output is the accept rule associated with that specific regular expression
- as such, a non-accepting state does not have an accept rule. An accept rule contains
a terminal, for example the token for the plus operator, and the position. These accept
rules are also utilised when minimising the DFA produced (see section 7.4).

7.2 Constructing a DFA

Our lexer generator takes as input a file containing C-commands, which are not pro-
cessed but merely passed on, and some regular expressions with accept rules.

To ease the writing of the regular expressions, it is possible to create ”groups”.
Instead of having to write the entire alphabet several times, a group can be created at
the beginning of the file. A group could be [a− d] {a|b|c|d}. Now it is possible to write
[a − d] in a regular expression, instead of having to write every letter from a to d, and
the lexer generator will replace it.

The regular expressions with accept rules are parsed. When the lexer generator has
parsed a regular expression and an accept rule, it builds a syntax tree from the regular
expression and concatenates it with an AND node with a leaf containing the accept
rule.

Concatenating two trees representing regular expressions with anAND node gives
the same result as R1 ∩ R2, while concatenation with an OR node has the same result
as R1 ∪ R2. A tree can contain kleene nodes, representing the kleene star used in
regular expressions (∗), OR nodes, AND nodes, and leaves containing either symbols
or accept rules. If other regular expressions have been entered, and thus other trees
have been created before this, they are concatenated using OR, creating a single tree.
The lexer generator will then create the DFA from the tree, represented as a table of
gotos.

Example 1 When processing {(x|y)∗x} {return new TOKEN example} {test} {return new
TOKEN test}, the lexer generator will first read ”(x|y)∗x” as a regular expression and ”return
new TOKEN example” as the accept rule.

It creates the tree on figure 7.1a. The leaf containing the accept rule is denoted #, and is in
leaf number 4. It then reads the next regular expression, {test} and its accept rule, it creates the
tree on figure 7.1b.

Then, the two trees are combined, creating the tree on figure 7.2. From this tree, a DFA is
built. The NFA seen on figure 7.3 is a simplified version of the DFA created.

CONSTRUCTING A DFA Page 69 of 140.

(a) Tree for {(x|y)∗x} (b) Tree for {test}

Figure 7.1: Trees for the regular expressions in example 1

Figure 7.2: The combined tree for {(x|y)∗x} and {test}.

Figure 7.3: NFA for example 1.

The DFA which is generated from the tree has additional transitions from every
state, with all other possible input, going to a default state - a sink. As this would create

IMPLEMENTING A LEXER Page 70 of 140.

a large and unreadable DFA, we have chosen to only show the relevant transitions.

7.3 Implementing a Lexer

The lexer is implemented in C++ and is heavily inspired by the article by Bumbulis
and Cowan [1994].

The DFA is implemented as a collection of states, where each state has a set of tran-
sitions, and a label with the state id. The lexer reads a block of source code into a buffer,
where a pointer, limit, points to the end of the buffer. Every time a state is visited,
the cursor pointer will be incremented to point to the next symbol of the input. A
switch statement will then identify the current symbol, and branch the program to the
next state. If the current symbol cannot lead to an accepting state the default goto
will branch to final which is a place in code where a token of the last accepted string
will be returned.

1 State1:
2 cursor++;
3 if (limit == cursor) fill ();
4 switch(*cursor){
5 case 97: goto State2; // ’ a’
6 case 98: goto State3; // ’ b’
7 default: goto final ;
8 };

Listing 7.1: Example State.

If the state is an accepting state additional code is needed.

1
2 State2:
3 cursor++;
4 if (limit == cursor) fill ();
5 accept = 1;
6 marker = cursor;
7 switch(*cursor){
8 case 49: goto State2; // ’1’
9 case 48: goto State3; // ’0’

10 default: goto final ;
11 };

Listing 7.2: Example accept state.

First accept will be given a value to identify which accept rule the accept state for
this regular expression results in. Second a marker will be set to point to the same as
the cursor. This is used later in the code final to retrieve the accepted input.

1 final :
2 cursor = marker;
3 switch(accept){
4 case 1: // user specified action code
5 {

IMPLEMENTING A LEXER Page 71 of 140.

6 return new StringLiteral(bufstart , marker − bufstart);
7 }
8 break;
9 case 2: // user specified action code

10 {
11 return new Terminal(TOKEN comma);
12 }
13 break;
14 default: // user specified default action code
15 {
16 return new Terminal(TOKEN error);
17 }
18 break;
19 }
20 bufstart = marker;
21 goto START;

Listing 7.3: Example accept state.

When the DFA reaches a state from which it can no longer reach an accepting state
with the current symbol, the lexer will go to final. The cursor is set to point to the
marker symbol as this is the last symbol in the last accepted string. The lexer can
return the accepted string as it is represented by the string in between the bufstart
and marker pointers. When a Token has been returned the bufstart pointer is set
to marker and the lexer is ready to begin reading the next token. The string buffer is
illustrated in figure 7.4.

Buffer management

When the cursor reaches the limit of the buffer the content of the buffer and all its
pointers are moved by bufstart - buffer. The buffer is then filled up from limit,
and limit is moved forward equal to the amount loaded into the buffer. This result
in the buffer being refilled, making the lexer ready to continue.

Figure 7.4: The String buffer and its pointers.

Indents

As indents and dedents are represented using white space, groo is not a context free
language - and thus, special care is taken to work around this issue. When the lexer
reads a newline symbol, it will go to a label got_indents. This place in the code
will count the number of tabs in the line, and compare it to the number of tabs in the
last line. If there is an equal number of tabs a newline token will be returned. If there

MINIMISATION OF DFA’S Page 72 of 140.

is a difference in the number of tabs, a number of indent or dedent tokens equal to the
difference will be returned. This is done to keep track of statements’ place in scope -
for example which statements are inside an if block or which class they belong to.

7.4 Minimisation of DFA’s

A DFA built as described in section 7.2 does not necessarily result in the best DFA - it
may be that several states can take the same input and end with the same accept rule.
Merging equivalent states will result in a smaller DFA.

The DFA in figure 7.5 is such a case. After reading a b in state s1, no matter what
input symbol is read only state s2 and s3 can be reached. As these two both are accept-
ing states, they could be combined into one state, creating a smaller and more efficient
DFA.

A notation for transitions on states and sets of states is introduced in definition 1.

Definition 1 Let s1 and s2 be states and S1 and S2 be sets of states, then transitions on the
symbol a will be denoted:

s1
a→ s2 if δ(s1, a) = s2

s1
a→ S2 if ∃s′ ∈ S2 where s1

a→ s′

S1
a→ S2 if S2 = {s′|∀s′′ ∈ S1, s

′′ a→ s′}

Figure 7.5: DFA which can be minimised.

7.4.1 Principle of Minimising a DFA

The method of determining which states should be merged is inspired by algorithm
3.39 given in Aho et al. [2006].

A set of states can be merged into one state if all their transitions lead to the same
state or set of states.

The idea is therefore to create a family of sets of states, where the sets contain states
that could potentially be merged, and then remove those that cannot. To determine
which states that cannot be merged, a definition of equivalence of states is introduced
in definition 2.

MINIMISATION OF DFA’S Page 73 of 140.

Definition 2 G is a family of sets of states, where ∀Si ∈ G and ∀a ∈ Σ, then for some Si

there exist an Sj so that Si
a→ Sj, {Si,Sj} ⊆ G.

Two states, sk and sh are sk ∼G sh if {sk, sh} ⊆ Si ∈ G.

Using this notation the states sk and sh can only be in the same set if sk ∼G sh.
When this applies to all states, we will have identified the states that can be merged.

In algorithm 1 this approach is listed as pseudo code. Q is the set of all states in the
DFA.

Algorithm 1 Minimise(Q)
G := Create family(Q)
while ∃Si ∈ G such that ∀s′ ∈ Si and ∀s′′ ∈ Si, s′ �G s′′ do

let s ∈ Si, and Sk = ∅
Si := Si \ {s},Sk := Sk ∪ {s}
G := G \ Si

G := G∪ Split(Sk, Si)
end while
Q := ∅
for ∀S ∈ G do

if |S| > 1 then
Q := Q∪Merge(Q, S)

end if
Q := Q ∪ S

end for
return Q

7.4.2 Implementing Minimise(DFA)

Recall that all accepting states have an accept rule which denotes the output given if
a string is accepted in that state. States with different accept rules cannot be merged,
as that would result in a non-equivalent DFA. The initial sets will therefore consist
of sets of states that either have the same accept rule or are non-accepting. In Cre-
ate family(Q) Q is the set of all states, Sr denotes a set of states which have the accept
rule r, and F is the set of accept states, introduced in section 7.1.

The next step is to split the sets so all states are equivalent. If two states si and sj

are si �G sj , then sj is removed to a new set of states, Sk. The states of this set must
also be equivalent. Split(S1, S2) is the algorithm for splitting a set of states.

The last step is to merge the final sets. If the set S, contains more that one element,
an arbitary state, s1, is selected as the representative state. We must then move all
transitions to states in S to this representative and delete the remaining states. But
if the state from which the transition starts is already in S, both that state and the
end state are changed to s1. This is to prevent loss of transitions when states are later

MINIMISATION OF DFA’S Page 74 of 140.

Algorithm 2 Create family(Q)
G := {S1}
for each state qi ∈ Q do

r := nil
if qi ∈ F then

r := accept rule
end if
if r = nil then

S1 = S1 ∪ {qi}
else if ∃Sr ∈ G then

Sr := Sr ∪ {qi}
else

create new set Sr := {qi}.
Let G := G ∪ Sr.

end if
end for
return Q

Algorithm 3 Split(S1, S2)
let s1 ∈ S1

for all symbols t ∈ Σ do
let Sj be Sj in s1

t→ Sj

for all states si ∈ S2 do
if si

t→ Sj then
S2 := S2 \ {si}. S1 := S1 ∪ {si}.

end if
end for

end for
return {S1,S2}

MINIMISATION OF DFA’S Page 75 of 140.

(a) DFA after creating the initial sets in algorithm 1 (b) DFA after S1 has been split.

Figure 7.6: Intermediate steps of minimising a DFA.

deleted. Algorithm 4 gives a pseudo code for this. Q is again the set of all states in the
DFA.

Algorithm 4 Merge(Q, S)
let s1 be some state of S
for all symbols t ∈ Σ do

for all states, qi, in Q do
if qi ∈ S and qi

t→ s ∈ S then
s1

t→ s1

else if qi
t→ s ∈ S, where s 6= s1 then

qi
t→ s1

end if
end for

end for
return {si}

7.4.3 Example of minimising a DFA
Example 2 The DFA from figure 7.5 will be used to show how algorithm 1 can be imple-
mented.

MINIMISATION OF DFA’S Page 76 of 140.

The first step is to create the family of sets of
states. Using the accept rules, the two sets, S1

and S2 are created.
In figure 7.6a the states have been coloured to
show this.

S1 := {s0, s1}
S2 := {s2, s3}

Then it is checked whether S1 must be split.
The first symbol is a, but as both transitions
lead to S1 no split is made.

s0
a→ S1

s1
a→ S1

For transitions on the next symbol, b, a split
must be made, as s1 leads to S2 but s0 leads
to S1 (see figure 7.6b).

s0
b→ S1

s1
b→ S2

S1 := {s1}
S3 := {s0}

S2 is the next set of states which is checked.
Both s2 and s3 have a transition on a to S2 so
no split is made.

s2
a→ S2

s3
a→ S2

Nor on b.
s2

b→ S2

s3
b→ S2

S3 contains only one state and cannot be split,
so no sets can be split any further.

S1 and S3 contain only one state, so only S2 can
be merged. s2 is selected as the representative
state.
All transitions to s3 are moved to s2, and all
transitions from s3 to S2 are changed to s2 →
s2.

s2
a→ s3 changed to s2

a→ s2
s3

a→ s3 changed to s2
a→ s2

s3
b→ s2 changed to s2

b→ s2

Figure 7.7 shows the resulting DFA.

Figure 7.7: Minimised version of the DFA from figure 7.5.

LEXICAL ANALYSIS BENCHMARK Page 77 of 140.

7.5 Lexical Analysis Benchmark

Figure 7.8: Lexter vs flex to-
kenize challenge.

This section describes a benchmark test performed on
our lexical analyser generator, Lexter, versus GNU flex,
a fast lexical analyser generator written in C. Both lex-
ers were given an approximately 1GB PL/0 code file to
tokenize. This amounts to approximately 90.000.000 (90
million) lines of code, of which only 38 lines are unique.
They were given the same file to analyse. The lexers in-
crement 4 different counters for each token they read, de-
pending on if the token is a keyword, value, operator, or
id. The time required to tokenize the code file is mea-
sured in seconds.

As figure 7.8 shows, Lexter performs 20 % better then
flex under this test. The figure reflects time spent in user
space, as both lexers used more or less the same amount
of time in system space. Both lexers run in O(n). Further-
more, Lexter also has a smaller binary file size compared
to flex.

CHAPTER 8

Parsing

An introduction to LR parsing, with focus on the implementation of our LALR(1) parser gen-
erators: g2c.

8.1 Context-Free Grammars

A context-free grammar (CFG) is used to specify the precise syntactic structure of a
programming language by stating a number of substitution rules for each language
construct, which consist of two kinds of symbols: terminals and nonterminals. Termi-
nals are the basic symbols from which strings can be formed. Nonterminals denote
sets of strings and are used to enforce a hierarchical structure on the language gener-
ated by the grammar. A CFG has four components - making it a 4-tuple (V,Σ, R, S)
[Aho et al., 2006] where

• V is a finite set of nonterminals. These are also known as syntactic variables.

• Σ is a set of terminal symbols.

• R is a set of substitution rules or, rather, productions. Each rule is a nonterminal,
followed by a string of mixed nonterminals and terminals.

• S ∈ V is a start symbol, which is one of the nonterminals.

Productions

A production is a rule of the grammar. As stated, each production starts with a non-
terminal, named the head or left hand side, an arrow, and a string of mixed terminals
and nonterminals. This is called the body or right hand side of the production. The
production specifies a substitution rule of how a construct can be written. The head
nonterminal represents a construct and the body represents the written form of the
construct.

〈expr〉 → 〈expr〉 ’+’ 〈term〉|〈term〉
〈term〉 → 〈term〉 ’*’ 〈factor〉|〈factor〉
〈factor〉 → ’(’ 〈expr〉 ’)’ | ’id’

Derivations

A derivation of a grammar is a sequence of substitution steps required in order to ob-
tain a string. The process of derivation begins with the start symbol, which in turn is

78

LR PARSING Page 79 of 140.

substituted with the body of the next possible substitution rule until no further deriva-
tion steps can be performed. It is therefore possible to follow the steps required to
generate a given string in the language of a grammar.

u
∗⇒ v

Derivations can be performed in two ways. The first method is called the left-
most derivation, which means that the leftmost nonterminal in the body is derived
before the next nonterminal. At each step the current nonterminal under considera-
tion is replaced by the next substitution rule. Once a number of derivation steps have
been performed the appropriate terminals will have replaced the leftmost nonterminal
and then the next nonterminal follows the same pattern until a string of terminals is
yielded.

A rightmost derivation proceeds by expanding the nonterminal farthest to the right
of the string, until there are no more production rules that can be derived.

8.2 LR Parsing

An introduction to the LR parsing algorithm.
Parsing is the process of reading a sequence of tokens and constructing a parse tree

by deducing the sequence of productions of the grammar that were used to generate
the sequence of input tokens. An LR parser is a bottom-up left to right parser that
produces the rightmost derivation. This means that it reads the input left to right, and
builds the parse tree bottom-up, always producing the rightmost derivation. Com-
pared to LL parsers, LR parsers can recognize a larger subset of the context free lan-
guages. LR parsers can be generated from context free grammars (CFGs) with left
recursion [Aho et al., 2006].

An LR parser can be implemented as a deterministic Push-Down Automaton (PDA),
which has a set of states, a stack, a stack alphabet and an input alphabet. An LR parser
reads terminals from the lexer and depending on state and input terminals, it either
pushes states and terminals on to the stack, reduces symboles on the stack or returns
the top of the stack as the result.

An LR parser can perform three types of actions:

Shift s Push the current terminal and the state s onto the stack and move to the next
state.

Reduce 〈A〉 → 〈B〉 Pop |〈B〉| symbols and states of the stack and use them to produce
〈A〉s. Then consult the GOTO table entry for the topmost state of the stack and
push the state for 〈A〉 on to the stack along with 〈A〉.

Accept Return the topmost symbol from the stack as the result.

An LR parser consults the ACTION table to determine which action to perform
given the topmost/current state and current input terminal. Table 8.1 is an example
of the ACTION and GOTO tables of an LR parser for grammar 1. ”s, a” where a is

LR PARSING Page 80 of 140.

〈Expr〉 → 〈Expr〉 ’+’ 〈Term〉 (8.1)
| 〈Term〉 (8.2)

〈Term〉 → 〈Term〉 ’*’ 〈Factor〉 (8.3)
| 〈Factor〉 (8.4)

〈Factor〉 → ’(’ 〈Expr〉 ’)’ (8.5)
| number (8.6)

Grammar 1: Grammar for basic arithmetics.

ACTION GOTO
State EOF ’+’ ’*’ ’(’ ’)’ number 〈Expr〉 〈Term〉 〈Factor〉
0 s, 4 s, 5 1 2 3
1 Accept s, 6
2 r, 8.2 r, 8.2 s, 7 r, 8.2
3 r, 8.4 r, 8.4 r, 8.4 r, 8.4
4 s, 4 s, 5 8 2 3
5 r, 8.6 r, 8.6 r, 8.6 r, 8.6
6 s, 4 s, 5 9 3
7 s, 4 s, 5 10
8 s, 6 s, 11
9 r, 8.1 r, 8.1 s, 7 r, 8.1
10 r, 8.3 r, 8.3 r, 8.3 r, 8.3
11 r, 8.5 r, 8.5 r, 8.5 r, 8.5

Table 8.1: LR(1) parser table for grammar 1.

a digit means ”Shift a”, in the above context and ”r, x” means ”Reduce” where x is a
reference to the production, from the grammar, which should be reduced.

An LR parser starts in its start state (that is state 0), reads a terminal, consults the
ACTION table and executes actions until the accept action is reached at which point it
returns. Notice that the ACTION table shows which action to perform and the GOTO
tables shows which state to enter, having reduced to a non-terminal.

There are different variants of LR parsers. The only difference between these parsers
is how their ACTION and GOTO tables are generated. On figure 8.1 the parsers and
the subsets of the unambiguous context free languages they can recognise is illus-
trated. This figure shows that an LL(0) parser can only recognise a subset of the context
free languages an LR(0) parser can recognise. The ”(0)”, ”(1)” and ”(k)” denotes the
number of lookahead symbols the parser uses. When choosing which parser to use
it is important to understand that the recognition power comes at the cost of larger
parser tables.

We have chosen to write an LALR(1) parser generator for groo, because LALR(1)
offers a good ratio between power and size. And by building our own parser generator

LALR(1) TABLE GENERATION Page 81 of 140.

Figure 8.1: Classes of context free grammars.

we expect to provide a fairly good performance too. Doing a hand written parser
would be possible, if we wanted to settle with an LL parser, however, this would not
be very flexible and it would make it difficult to add new language constructs later in
the development.

8.3 LALR(1) Table Generation

The set of states of an LR parser is a set of items. For a parser without lookaheads,
an item is a tuple of a production and a position within this production. We shall call
this an LR(0) item. For parsers with lookaheads, an item is a tuple of a production,
a position within the production and a lookahead symbol; we shall call this an LR(1)
item.

For convenience we denote an LR(0) item as a production with a dot, denoting the
position within the production. For example: {〈Expr〉 → 〈Expr〉 · ’+’ 〈Term〉} is an
LR(0) item. LR(1) items are denoted as follows: {〈Expr〉 → 〈Expr〉 · ’+’ 〈Term〉, ’*’ }
where ’*’ is the lookahead symbol.

Definition 3 The core of an LR(1) item {〈A〉 → α · β,X} is the LR(0) item {〈A〉 → α · β}.

A state is a set of items, where the position within the items denotes the parts of
a possible production read so far. To compute an LALR(1) parser table, we will need
to compute the LALR(1) states, and the sets of LR(1) items that denote these states.
This can be done by computing all LR(1) states, and merging all states with matching
cores (see definition 3), which is an expensive operation due to the number of LR(1)

LALR(1) TABLE GENERATION Page 82 of 140.

states. Alternately, the LALR(1) states can be found by computing the LR(0) states and
computing appropriate lookaheads for these.

Definition 4 An LR(0) or LR(1) item {〈A〉 → α · β, a} is a kernel item if α is a non-empty
sequence of symbols or 〈A〉 is the start symbol in the grammar.

8.3.1 Computation of LR(0) States

To compute all the LR(0) states for a context free grammar we introduce three func-
tions: CLOSURELR(0), GOTOLR(0) and itemsLR(0). The CLOSURELR(0) function can
compute the set of items that denote a state given the kernel items for this state, as
seen in algorithm 5, which is inspired by Aho et al. [2006, fig. 4.32].

Algorithm 5 Compute CLOSURELR(0)(I,G) for LR(0) items.
Input: A CFG G and a set of LR(0) items I
retval = I
new = stack(I) {This initialize new to be a stack}
while |new| 6= 0 do
n = new.pop()
for all productions {〈B〉 → γ} ∈ G where n = {〈A〉 → α · 〈B〉β} do
{α, β and γ are sequences of zero or more symbols.}
if {〈B〉 → ·γ} /∈ retval then
retval = retval ∪ {〈B〉 → ·γ}
new.push({〈B〉 → ·γ})

end if
end for

end while
return retval

When we have a set of items I that constitue a state, theGOTO function [Aho et al.,
2006, section 4.6.2] can compute the set of items GOTO that denote a state to which
we must go when X is read or reduced in state I .

Algorithm 6 Compute GOTOLR(0)(I,X,G) for LR(0) items.
Input: I a set of LR(0) items, a symbol X ∈ Σ and a CFG G = (V,Σ, R, S)
retval = {}
for all {〈A〉 → α ·Xβ} ∈ I do
{α and β are sequences of zero or more symbols.}
retval = retval ∪ {〈A〉 → αX · β}

end for
return CLOSURE(retval, G)

If we have a context free grammar G and wish to find all the LR(0) states, we just
need to find the set of items that denotes the start state. Then it is just a matter of

LALR(1) TABLE GENERATION Page 83 of 140.

applying the GOTOLR(0) function, until all states have been found. To easily find the
set of items that denotes the start state, we augment the grammar with a new start
symbol, that is only used in one production.

Definition 5 If 〈S′〉 ∈ G.V is the start symbol of the grammar G, then G′ = (V ′,Σ, R′, S) is
the augmented grammar, where V ′ = G.V ∪ {〈S′〉}, R′ = R∪ {〈S′〉 → 〈S〉} and G.S = 〈S′〉,
where 〈S′〉 /∈ G.V ∪G.Σ.

When we have an augmented grammar G′ we can be certain that the set of items,
denoting the start state is CLOSURE({〈S ′〉 → ·〈S〉}, G′) because 〈S ′〉 → 〈S〉 is the
only production for 〈S ′〉, which is the start symbol. The items function, algorithm 7
inspired by Aho et al. [2006, Fig. 4.33] but optimized with a stack, takes an augmented
grammar and computes the sets of items denoting the LR(0) states.

Algorithm 7 Compute itemsLR(0)(G
′) for LR(0) items.

Input: CFG G′ with augmented with start variable 〈S ′〉
states = {CLOSURE({〈S ′〉 → ·〈S〉}, G′)}
new = stack(states){This initialize new to be a stack}
while |new| 6= 0 do
I = new.pop()
for all grammar symbols X ∈ V ∪ Σ where G′ = (V,Σ, R, S) do
g = GOTO(I,X,G′)
if |g| 6= 0 ∧ g /∈ states then
states = states ∪ {g}
new.push(g)

end if
end for

end while
return states

LALR(1) TABLE GENERATION Page 84 of 140.

8.3.2 Computation of LR(1) States

To compute LR(1) states for a CFG we will introduce the 3 functions: CLOSURELR(1),
GOTOLR(1) and itemsLR(1) for LR(1) items. Again the CLOSURELR(1) function, algo-
rithm 8 inspired by Aho et al. [2006] but optimized for performance with a stack, can
compute the set of items that denotes a state given the kernel items for this state.

Algorithm 8 Compute CLOSURELR(1)(I,G) for LR(1) items.
Input: A CFG G and a set of LR(1) items I
retval = I
new = stack(I){This initialize new to be a stack}
while |new| 6= 0 do
n = new.pop()
for all productions {〈B〉 → γ} ∈ G where n = {〈A〉 → α · 〈B〉β, x} do
{α, β and γ are sequences of zero or more symbols.}
for all terminal y ∈ FIRST (βx) do
{FIRST (〈X〉) is the set of terminals a ∈ FIRST (〈X〉) such that 〈X〉 ∗⇒ aδ
where δ is a sequance of zero or more terminals.}
if {〈B〉 → ·γ, y} /∈ retval then
retval = retval ∪ {〈B〉 → ·γ, y}
new.push({〈B〉 → ·γ, y})

end if
end for

end for
end while
return retval

The GOTOLR(1) function, algorithm 9 from Aho et al. [2006, section 4.40], can given
a set of items, a symbol and a grammar, compute the set of items that denotes the next
state the parser should enter having read or reduced the given terminal.

Algorithm 9 Compute GOTOLR(1)(I,X,G) for LR(1) items.
Input: I a set of LR(1) items, a symbol X ∈ Σ and a CFG G = (V,Σ, R, S)
retval = {}
for all {〈A〉 → α ·Xβ, a} ∈ I do
{α and β are sequences of zero or more symbols.}
retval = retval ∪ {〈A〉 → αX · β, a}

end for
return CLOSURELR(1)(retval, G)

The items function, algorithm 10, can given an augmented CFG compute all sets of
items. This is done using the GOTOLR(1) function from any set of items found, until
no new sets of items can be found. Thus all states will have been found.

LALR(1) TABLE GENERATION Page 85 of 140.

Algorithm 10 Compute itemsLR(1)(G
′) for LR(1) items.

Input: CFG G′ with augmented start variable 〈S ′〉 and ’$’ denotes end of input.
states = {CLOSURE({〈S ′〉 → ·〈S〉, ’$’ }, G′)}
new = stack(states){This initialize new to be a stack}
while |new| 6= 0 do
I = new.pop()
for all grammar symbols X ∈ V ∪ Σ where G′ = (V,Σ, R, S) do
g = GOTO(I,X,G′)
if |g| 6= 0 ∧ g /∈ states then
states = states ∪ {g}
new.push(g)

end if
end for

end while
return states

8.3.3 Computation of LALR(1) States

LALR(1) states for a grammarG is effectively the LR(1) states for the grammarGwhere
all states with the same core (by defintion 3) have been merged. Thus it is possible,
however, very inefficient to find the LALR(1) states by computing the LR(1) states and
merging them as required. But as previously explained it is also possible to compute
the LR(0) states and find lookaheads for these. This is done in two steps, first we
compute spontaneous lookaheads and lookahead propagation, then we propagate the
spontaneous lookaheads to states using the information about lookahead propagation.

Algorithm 11 Finding spontaneous and propagated lookaheads
Input: CFG G and the set of kernel items K for the set of items that denotes an LR(0)

state of G
I = CLOSURELR(0)(K,G)
for all items {〈A〉 → α · β} ∈ K do
J = CLOSURELR(1)({{〈A〉 → α ·β,#}}, G) where # /∈ Σ∪V and G = (V,Σ, R, S)

if {〈B〉 → γ ·Xδ, a} ∈ J ∧ a 6= # then
a is a spontaneously generated lookahead for
{〈B〉 → γX · δ} ∈ GOTOLR(0)(I,X,G)

end if
if {〈B〉 → γ ·Xδ,#} ∈ J then

Lookaheads propagate from 〈A〉 → α · β ∈ I to
〈B〉 → γX · δ ∈ GOTOLR(0)(I,X,G)

end if
end for

Algorithm 11, Aho et al. [2006, Algorithm 4.62], can be used to find spontaneous
lookaheads and lookahead propagation in a grammar. The algorithm must be exe-

LALR(1) TABLE GENERATION Page 86 of 140.

cuted for each set of LR(0) kernel items that denote a state. In a practical implementa-
tion the result can be stored in a table.

Table 8.2 shows the result of running algorithm 11 for all sets of LR(0) kernels that
denote a state of the augmented grammar of grammar 1. In table 8.2 there is a row for
each kernel, and each kernel has been assigned an id1. The column ”Propagation ids”
contains a set of ids that the kernel propagates lookaheads to.

Id State Item Sp. lookaheads Propagation ids
0 I0: 〈S ′〉 → ·〈Expr〉 { ’$’ } {1, 2, 3, 4, 5, 6, 7}
1 I1: 〈S ′〉 → 〈Expr〉· {} {}
2 〈Expr〉 → 〈Expr〉 · ’+’ { ’+’ } {8}
3 I2: 〈Expr〉 → 〈Term〉· { ’+’ , ’)’ } {}
4 〈Term〉 → 〈Term〉 · ’*’ 〈Factor〉 { ’+’ , ’*’ , ’)’ } {9}
5 I3: 〈Term〉 → 〈Factor〉· { ’+’ , ’*’ , ’)’ } {}
6 I4: 〈Factor〉 → ’(’ · 〈Expr〉 ’)’ { ’+’ , ’*’ , ’)’ } {10}
7 I5: 〈Factor〉 → number · { ’+’ , ’*’ , ’)’ } {}
8 I6: 〈Expr〉 → 〈Expr〉 ’+’ · 〈Term〉 {} {5, 6, 7, 12, 13}
9 I7: 〈Term〉 → 〈Term〉 ’*’ · 〈Factor〉 {} {6, 7, 14}
10 I8: 〈Factor〉 → ’(’ 〈Expr〉 · ’)’ {} {15}
11 〈Expr〉 → 〈Expr〉 · ’+’ 〈Term〉 { ’+’ , ’)’ } {8}
12 I9: 〈Expr〉 → 〈Expr〉 ’+’ 〈Term〉· {} {}
13 〈Term〉 → 〈Term〉 · ’*’ 〈Factor〉 { ’*’ } {9}
14 I10: 〈Term〉 → 〈Term〉 ’*’ 〈Factor〉· {} {}
15 I11: 〈Factor〉 → ’(’ 〈Expr〉 ’)’ · {} {}

Table 8.2: Result of running algorithm 11 for the augmented grammar of grammar 1

Once a table like table 8.2 has been computed, the lookaheads should be propa-
gated. This is done by adding the set of lookaheads for one item to the sets of looka-
heads for the items i propagates to. This is done for all items and repeated untill no
more propagation occurs. The result of doing this for table 8.2 can be seen in table 8.3.

Following table 8.3 the LALR(1) kernel items of state I1 are {〈S ′〉 → 〈Expr〉·, ’$’ },
{〈Expr〉 → 〈Expr〉 · ’+’ , ’+’ } and {〈Expr〉 → 〈Expr〉 · ’+’ , ’$’ }. The entire set of
items for state I1 can be found using CLOSURELR(1)(I,G) from algorithm 8.

1The ids are unique and have only been introduced for the notational convenience.

LALR(1) TABLE GENERATION Page 87 of 140.

State Item Lookaheads
I0: 〈S ′〉 → ·〈Expr〉 { ’$’ }
I1: 〈S ′〉 → 〈Expr〉· { ’$’ }

〈Expr〉 → 〈Expr〉 · ’+’ { ’+’ , ’$’ }
I2: 〈Expr〉 → 〈Term〉· { ’+’ , ’)’ , ’$’ }

〈Term〉 → 〈Term〉 · ’*’ 〈Factor〉 { ’+’ , ’*’ , ’)’ , ’$’ }
I3: 〈Term〉 → 〈Factor〉· { ’+’ , ’*’ , ’)’ , ’$’ }
I4: 〈Factor〉 → ’(’ · 〈Expr〉 ’)’ { ’+’ , ’*’ , ’)’ , ’$’ }
I5: 〈Factor〉 → number · { ’+’ , ’*’ , ’)’ , ’$’ }
I6: 〈Expr〉 → 〈Expr〉 ’+’ · 〈Term〉 { ’+’ , ’)’ , ’$’ }
I7: 〈Term〉 → 〈Term〉 ’*’ · 〈Factor〉 { ’+’ , ’*’ , ’)’ , ’$’ }
I8: 〈Factor〉 → ’(’ 〈Expr〉 · ’)’ { ’+’ , ’*’ , ’)’ , ’$’ }

〈Expr〉 → 〈Expr〉 · ’+’ 〈Term〉 { ’+’ , ’)’ }
I9: 〈Expr〉 → 〈Expr〉 ’+’ 〈Term〉· { ’+’ , ’)’ , ’$’ }

〈Term〉 → 〈Term〉 · ’*’ 〈Factor〉 { ’*’ , ’+’ , ’)’ , ’$’ }
I10: 〈Term〉 → 〈Term〉 ’*’ 〈Factor〉· { ’+’ , ’*’ , ’)’ , ’$’ }
I11: 〈Factor〉 → ’(’ 〈Expr〉 ’)’ · { ’+’ , ’*’ , ’)’ , ’$’ }

Table 8.3: Result of propagating the lookaheads of table 8.2.

RESOLUTION OF CONFLICTS Page 88 of 140.

8.3.4 Generating Parsing Tabels

To generate the LALR(1) parsing tabels ACTION and GOTO for a grammar G the sets
of items {I0, I1, I2 . . . } that denotes the states of the augmented grammar G′ will be
needed. They can be computed as shown in section 8.3.3. The parsing tables can be
computed by using algorithm 12, from Aho et al. [2006, algorithm 4.56].

Algorithm 12 Building parser table
Input: The sets of items that denotes the states {I0, I1 . . . } of an augmented CFG G′

for all each set of items Ii that denotes an LALR(1) state of G′ do
for all {〈A〉 → α · ’a’ β, ’b’ } ∈ Ii do
Ij = GOTOLR(1)(Ii, ’a’ , G′)
ACTION [i, ’a’] = ”shift j”

end for
for all {〈A〉 → α·, ’b’ } ∈ Ii do

if 〈A〉 6= 〈S ′〉 then
ACTION [i, ’a’] = ”reduce 〈A〉 → α”

else
ACTION [i, ’$’] = ”accept” {In this case ’a’ = ’$’ }

end if
end for
for all 〈A〉 ∈ V where G′ = (V,Σ, R, S) do
Ij = GOTOLR(1)(Ii, 〈A〉, G′)
GOTO[i, 〈A〉] = j

end for
end for

Note that if there’s is a conflict in during the generation of the parsing tables, us-
ing algorithm 12, the grammar is not in the LALR(1) class of context free grammars.
Imagine that given a state and an input terminal the ACTION table does not know
whether to shift or reduce. To resolve such a situation the grammar could be trans-
formed. Alternatively, conflicts can also be addressed with a conflict resolution strat-
egy, as presented in section 8.4.

8.4 Resolution of Conflicts

As mentioned in section 8.3.4 a conflict resolution strategy can be used to resolve ac-
tion conflicts and generate LALR(1) parsing tables for a grammar that is not in the
LALR(1) class of context free grammars.

There exists three different kinds of conflicts, shift-shift, shift-reduce and reduce-
reduce. A shift-shift conflict occurs when algorithm 12 cannot determine which state
to enter having shifted the input terminal. A shift-reduce conflict occurs if algorithm
12 cannot determine whether to shift or reduce given input and state. A reduce-reduce
conflict occurs if algorithm 12 cannot determine which reduction to perform.

EFFICIENT PUSH-DOWN AUTOMATON IMPLEMENTATION Page 89 of 140.

A conflict resolution strategy specifies how to resolve these conflicts. In many
parser generators, such as GNU bison, shift-reduce conflicts are implicitly resolved
in favor of shift, whereas other conflicts requires annotations to the grammar, in form
of precedence and associativity.

In our parser generator g2c, conflicts are always implicitly resolved in favor of
the first mentioned grammar rule and in a shift-reduce conflict between a shift and
a reduce using the same rule, the reduction is prefered. This strategy is quite easily
implemented and keeps that grammar clear of ugly annotations.

This strategy also means that conflicts occure quietly, and the developer risks for-
getting about them. However, g2c prints all conflicts to a logfile, and alerts the devel-
oper if there were conflicts. In most cases checking that the conflicts in the logfile are
resolved as desired is sufficient, if not the input grammar rules can be rearranged as
needed.

This conflict resolution strategy is probably not desirable for very complex gram-
mars, and may not offer as much power as conflict resolutions strategies that uses
annotations. Nevertheless, it is easy to implement, and easily resolves the conflicts we
have allowed in our grammar.

8.5 Error Recovery

When the parser can neither shift, reduce or accept it enters an error mode. When in
error mode, the parser interpretes the unexpected terminal as an ErrorTerminal. The
parser will then remove symbols from the stack, until it enters a state where the error
symbol can be shifted. If it is unable to find a state where the error symbol can be
shifted, it will terminate. The parser must then delete enough tokens from the input,
so it can successfully continue to parse without generating further errors.

This method of error recovery is known as ”Panic Mode”, and is easy to implement
because it is often easy to recognise the end of a statement. If the parser can end a
statement legally with an error terminal present, it can move on to continue parsing
the rest of the application. This is also the main reason it was chosen for our parser.

It is also possible to implement what is known as ”Phrase-Level recovery”. This
approach differs in that the parser will attempt to identify the intent of the erroneous
code, and then, if a subroutine is available for correcting the error, correct it. Such
subroutines could insert, remove or alter the input stack to allow it to continue parsing.
There is a potential risk here however for entering an infinite loop, so such actions
must be considered carefully. [Aho et al., 2006]

8.6 Efficient Push-Down Automaton Implementation

This sections discusses how to efficiently implement a deterministic Push-Down Automaton
(PDA) in C++ with GCC extensions.

Many parser generators such as Bison implement the PDA of the parser using a
table in memory. That is, a multidimensional array from which an action can be found
in O(1) using a state and terminal. This may seem like a good solution, however,

EFFICIENT PUSH-DOWN AUTOMATON IMPLEMENTATION Page 90 of 140.

using GCC extensions it is possible to implement a PDA directly in C++, similar to
how we implemented the DFA in the lexer. This is interesting as it may offer greater
performance.

The basic idea is to make labels for all actions and states, then push terminals and
label pointers on to a stack, while jumping between the different actions using goto
statements. In the following code samples we are using two stacks, one for symbols
and one for states, however, as they are being pushed and popped simultaneously
combining them should be easy. Also notice that instead of using heap allocations for
these stacks we could use stack allocations if C++ would allow this.

The parse function takes a lexer as argument and start by initializing it as two
stacks, a variable for topmost non-terminal, a pointer to the current terminal and some
temporary variables for action code execution. Then it jumps to the start state, START
which just an alias for the label STATE0.

1 Node* parse(Lexer* lexer){
2 stack<Node*> symbols = stack<Node*>();
3 stack<void*> states = stack<void*>();
4 Symbol top non terminal; //Topmost non−terminal
5 Terminal* current terminal = lexer−>nextToken();
6 Node* result, *arg0, *arg2, *arg1; // Used in actioncode
7 goto START;

Each state in the PDA is implemented similar to this. Please note that the code
below is an example of the structure, not an example of an actual state. If the program
jumps to the Shift5 label, a shift action will be executed. It is quite obvious that the
current terminal is pushed to the symbols stack and that a new terminal is read. It
is however, less obvious what the states.push(&&Goto5); statement does. This
statement uses a GCC extention to get a pointer to the label Goto5 and pushes it to a
stack. The only reason our LR parser needs the current state to be pushed on to the
stack is that it may need to perform lookups using the GOTO table entry for this state
after a future reduction. So pushing a pointer to the label where the GOTO table entry
for this state is implemented as a switch solves this issue quite nicely. Also notice that
the State5 label is placed before the label pointer is pushed to the states stack, this
is because the action for each case in the GOTO table entry would otherwise require
the label pointer to be pushed here.

1 Shift5 :
2 symbols.push(current terminal);
3 current terminal = lexer−>nextToken();
4 State5:
5 states. push(&&Goto5);
6 switch(current terminal−>token()){
7 case TOKEN EOF: goto Reduce1;
8 case TOKEN minus: goto Shift8;
9 case TOKEN plus: goto Shift10;

10 default: goto ERROR;
11 }
12 Goto5:
13 switch(top non terminal){

EFFICIENT PUSH-DOWN AUTOMATON IMPLEMENTATION Page 91 of 140.

14 case SYMBOL E: goto State18;
15 case SYMBOL F: goto State4;
16 case SYMBOL error:
17 states. pop();
18 symbols.pop();
19 goto *states.top();
20 default: goto FATAL ERROR;
21 }

For all productions a reduction action is implemented. Below is an example of
how these are implemented by our parser generator. The parser assigns symbols to a
variable such as arg0 which may be used in the action code, or deletes them. It then
pops symbols and states off the stacks. The action code sets the result variable to
the result. This result is then pushed on to the stack, and the topmost non-terminal
variable top_non_terminal is set, before the topmost GOTO entry label pointer is
dereferenced and jumped to. Which handles GOTO table lookup and jumps back into
a state.

1 Reduce7: //E −> E [plus] E
2 arg2 = symbols.top();
3 symbols.pop();
4 states. pop();
5 delete symbols.top();
6 symbols.pop();
7 states. pop();
8 arg0 = symbols.top();
9 symbols.pop();

10 states. pop();
11 result = NULL;
12 {
13 result = new AddNode(arg0, arg2);
14 }
15 symbols.push(result);
16 top non terminal = SYMBOL E;
17 goto *states.top();

The parser will jump to the ERROR label if it encounters an unexpected terminal.
At the ERROR label the current terminal is wrapped in an ErrorTerminal and the
topmost non-terminal is set to error. Then the program jumps to the GOTO table entry
for the topmost state on the states stack.

1 ERROR:
2 current terminal = new ErrorTerminal(current terminal);
3 top non terminal = SYMBOL error;
4 goto *states.top();

The GOTO table entry for a state is extended to support error handling, so if the
topmost non-terminal is an error it will pop a symbol and state off the stack and jump
to the GOTO table entry of the topmost state. Alternatively if the state of the GOTO
table entry can shift an error terminal it will jump to this shift action. Note that the de-

EFFICIENT PUSH-DOWN AUTOMATON IMPLEMENTATION Page 92 of 140.

fault action of states that shifts error terminals is not to jump to ERROR, but to discard
the current terminal, read a new one and try to use this.

1 Shift7 :
2 symbols.push(current terminal);
3 current terminal = lexer−>nextToken();
4 State7:
5 states. push(&&Goto7);
6 switch(current terminal−>token()){
7 case TOKEN minus: goto Shift3;
8 case TOKEN lp: goto Shift5;
9 case TOKEN int: goto Shift6;

10 case TOKEN error: goto Shift15;
11 default: goto ERROR;
12 }
13
14 Goto7:
15 switch(top non terminal){
16 case SYMBOL E: goto State14;
17 case SYMBOL F: goto State4;
18 case SYMBOL error:
19 goto Shift15;
20 default: goto FATAL ERROR;
21 }
22 Shift15:
23 symbols.push(current terminal);
24 current terminal = lexer−>nextToken();
25 State15:
26 states. push(&&Goto15);
27 Switch15:
28 switch(current terminal−>token()){
29 case TOKEN semicolon: goto Reduce3;
30 case TOKEN EOF: goto Reduce3;
31 default:
32 ((ErrorTerminal*)symbols.top())−>discard(current terminal);
33 current terminal = lexer−>nextToken();
34 goto Switch15;
35 }
36 Goto15:
37 switch(top non terminal){
38 case SYMBOL error:
39 states. pop();
40 symbols.pop();
41 goto *states.top();
42 default: goto FATAL ERROR;
43 }

GRAMMAR FOR GROO Page 93 of 140.

8.7 Grammar For groo

Groo ::= newline Top defs groo
| Top defs

Top defs ::= Top def Top defs Top level grouping
| Top def
| error

Top def ::= class id : indent Members dedent Class
Top def ::= class id extends id : indent Members dedent

Members ::= Member newline Members Member grouping
| ClosedMember Members
| Member
| ClosedMember

Member ::= Types id Open Member declarations
| Types id assignment Expr

ClosedMember ::= Types id ParamsBlock : Block Closed Member declaration
| Types id assignment ClosedExpr

Types ::= Type , Types Type grouping
| Type

Type ::= id Types
| Type arrow Type
| (Types)

ParamsBlock ::= (Params) ParamBlocks
| ()

Params ::= Param , Params Param grouping
| Param

Param ::= Type id Parameter

ArgsBlock ::= (Args) ArgBlocks
| ()

Args ::= Arg , Args Arg grouping
| Arg

Arg ::= Expr Argument

Table 8.4: Concrete syntax for groo.

GRAMMAR FOR GROO Page 94 of 140.

V arExpr ::= id Variables
| Expr dot id

Expr ::= minus Expr Open expressions
| Expr div Expr
| Expr mul Expr
| Expr modulo Expr
| Expr minus Expr
| Expr plus Expr
| Expr shift left Expr
| Expr shift right Expr
| Expr greater than or equal Expr
| Expr less than or equal Expr
| Expr greater than Expr
| Expr less than Expr
| Expr equality Expr
| Expr inequality Expr
| not Expr
| Expr and Expr
| Expr or Expr
| int
| string
| real
| bool
| Expr ArgsBlock
| V arExpr assignment Expr
| V arExpr
| (Expr)

ClosedExpr ::= ParamsBlock arrow Type : Block Closed expressions
| Expr equality ClosedExpr
| V arExpr assignment ClosedExpr

Block ::= indent Stmts dedent Block structure
| Stmt

Stmts ::= Stmt newline Stmts Statement grouping
| ClosedStmt Stmts
| Stmt
| ClosedStmt

Stmt ::= Expr Open statements
| return Expr
| return
| var V arDecls

Table 8.5: Concrete syntax for groo.

GRAMMAR FOR GROO Page 95 of 140.

ClosedStmt ::= if Expr : Block else: Block Closed statements
| if Expr : Block
| ClosedExpr
| while Expr : Block
| var ClosedV arDecls

ClosedV arDecls ::= V arDecls , ClosedV arDecl Closed variable grouping
| ClosedV arDecl

ClosedV arDecl ::= id assignment ClosedExpr Closed variable declaration

V arDecls ::= V arDecls , V arDecl Open variable grouping
| V arDecl

V arDecl ::= id Open variable declaration
| id assignment Expr

Top def ::= enum id: indent Labels dedent Enum

Labels ::= Label newline Labels Label grouping
| Label

Label ::= id assignment int Label declaration
| id

Table 8.6: Concrete syntax for groo continued.

groo’s concrete grammar is shown in tables 8.4, 8.5, and 8.6. It is the exact gram-
mar that is fed to the parser generator. Grammar rules of note are the rules marked
”grouping”, which are designed to use the setNext() method on the given node,
thus creating a list of the given node; for instance the Members grouping. The first
two grammar rules in Members have action code that tells Member to set Members
as its next. Stmts and closed and open variable groupings are the only rules which
do not follow this pattern, as we must ensure that we cannot have a closed variable
declaration in the middle of a sequence of variable declarations. Statements are spe-
cial, as a statement can be a sequence of variable declarations. Using setNext() here
would cause the sequence of variable declarations to be lost. append is used here in-
stead, running through the variable declaration list and appending the next on the last
variable declaration.

We must also distinguish between an open or closed member, expression, and
statement, as well as variable declaration. Open or closed refers to whether or not
the given rule ends with a newline or a dedent. This is an issue, because a sequence
of rules that ends on a block will not be seperated by a newline. We must therefore
distinguish between a ”closed” rule (a rule that ends on a block) and an ”open” rule (a
rule that does not end on a block, therefore, a sequence of these rules will be seperated
by newlines).

Part IV

Contextual Analysis

96

CHAPTER 9

Contextual Analysis

Introduction

In the previous part we covered the essentials of syntactical analysis, which resulted in
an abstract syntax tree, which we needed for the next step of the multi-pass compiler
for groo. This step is called the contextual analysis stage, where we describe how the
meaning of the program is derived and how type checking is implemented. To begin
with we will introduce the general organisation of classes and techniques employed
in the various steps that constitute the contextual analysis stage.

9.1 Abstract Syntax Tree (AST)

All nodes in the AST have Node as base class. Node contains a single, virtual method
called accept, which enables operations to be performed on the tree with double-
dispatching. This scheme is widely known as the visitor pattern.

Special nodes in the AST implement the LinkedNode template. This acts as a
single linked list of nodes of the same type. For example, MemberNode, which is the
abstract node for instance variables and instance methods. Each MemberNode has a
next() that points to the next MemberNode, except the last one, where the end of the
list is marked using NULL. MemberNode can also set its next(), using setNext() or
it can append() a MemberNode to the end of a list of MemberNodes.

There are five major categories in the AST. Constructs, Statements, Expressions,
Terminals, and Types. Constructs are top level nodes such as enums and classes, as
well as the member nodes of enums and classes; fields, methods and labels. Further-
more, since parameters are primarily used by constructs, ParamNode is also recog-
nised as a Construct. Construct nodes are explicitly typed; however the parser itself
only provides a SimpleType, which is later visited to establish the proper type. Con-
structs also provide access to their body.

Statements make up the body of Constructs and other Statements. Among state-
ments are if, while, variable declaration, and return as well as a statement which en-
capsulates an Expression. Statements do not contain type information.

Expressions represents all the arithmetic that can be performed in groo, such as ad-
dition, multiplication, bit shifting, or creating anonymous functions. All Expressions
contain type information, which is set during type checking.

Terminals are special nodes, which are used to encapsulate data from the code,
such as strings, integers, or identifiers of variables or types.

Finally there are Types, which are nodes that denote a type. Certain types;
InferredType, TupleType, and SimpleType are utility types, and do not denote

97

VISITORS Page 98 of 140.

a type in themselves. They do however point to another type, which eventually will
point to a proper type.

Some Statements and almost all Constructs are sub classes of VariableDeclaration.
These nodes contain extra information used in codegeneration, which is not attended
until the Allocation visitor.

9.2 Visitors

The visitor pattern allows easy traversal of the AST during the various stages of com-
pilation. For example, when creating a graphical representation of the AST, the Dot-
Builder visitor navigates the AST, visiting each node; drawing the tree as it goes.

By using this pattern it is possible to create an arbitrary number of visitors. We
have implemented the following visitors:

DotBuilder Generates a graphical representation of the AST. Useful for debugging.

NodePrinter Outputs the AST to the console in a readable format. Also useful for
debugging.

ErrorFinder Reports syntactical errors, including line number and token position.

TypeChecker Performs contextual analysis, which includes type checking.

Intepreter Semantics driven recursive interpreter.

AllocationVisitor Calculates the amount of memory needed to be allocated before
running Codegen.

Codegen Compiles the AST into the intermidiate language gril.

VROOM Iterative interpreter.

It would be relatively easy to implement other useful visitors, such as a pretty
printer, which formats code, or a spell-checker.

Visitors inherit from the Visitor class. The base class contains overloads of the
virtual visit method for each node represented in the AST.

As mentioned earlier, the visitor pattern employs the concept of double-dispatching,
which is useful as it adds a level of abstraction to solve the problem of calling the cor-
rect concrete visit method for a concrete node object. This is done by dispatching
the method call depending on the runtime type of a given node.

In this way we avoid having to perform explicit type checking to invoke the cor-
rect concrete method. In our implementation, each concrete visit method is dis-
tinguished by its formal parameter. An alternative naming convention would be to
denote each method as visitConcreteNodeX(ConcreteNodeX node), however
we decided to make use of the method overloading available in C++, since the formal
parameter provides enough clarity. An informal illustration of the double-dispatch
performed in the visitor pattern is shown in figure 9.1.

TYPE CHECKER Page 99 of 140.

Figure 9.1: The visitor pattern.

The different visitors may traverse the AST systematically with depth-first, breadth-
first or a hybrid search algorithm.

A depth-first traversal works by visiting nodes in a first-in-last-out manner, the
ordering is usually maintained by a stack.

Breadth-first traversal is performed on nodes first-in-first-out, with a queue-like
data structure, so the AST is visited in a sideways manner.

For instance, the DotBuilder performs a depth-first traversal of the AST. The Type-
Checker uses a hybrid of the two searches. It uses breadth-first search in order to
gather knowledge of classes, instance variables, methods, and enumerations, after
which it switches to depth-first traversal in method bodies.

9.3 Type Checker

The TypeChecker visitor is responsible for ensuring that every variable is declared
before use and that the program is well-typed.

There are two types of declarations - VariableDeclarations and TypeDeclarations.
A VariableDeclaration associates a TypeDenoter to a variable in the IdTable.
A TypeDeclaration binds a TypeDenoter to an Identifier, indicating that the
Identifier represents the type. The following nodes are declarations:

ClassNode
A ClassNode is a VariableDeclaration as it acts as a constructor. A ClassNode
is also a TypeDeclaration as a class is a type in groo.

EnumNode
An EnumNode is a TypeDeclaration, as an enum is a type in groo.

FieldNode
A FieldNode is an instance variable - therefore it is a VariableDeclaration.

TYPE CHECKER Page 100 of 140.

MethodNode
Method names are treated as variables in groo.

PrimitiveDeclaration
PrimitiveDeclaration is a TypeDeclaration for primitives.

VarDeclStmt
VarDeclStmt is used for variable declarations inside a method, and is therefore
a VariableDeclaration.

A TypeDenoter is an abstract class, which denotes a type. There are several dif-
ferent kinds of TypeDenoters, each representing their own type. Some are also for
utility purposes, such as grouping types in a tuple. The following classes are type
specialisations:

ClassType
Contains the declaration of the class.

EnumType
Contains the declaration of the enum.

FunctionType
Contains two TypeDenoters - the type of the parameters and the return type.
These types can be any of the other types.

InferredType
Special type which has no initial type. It assumes the first type it is compared to.
Mainly used as part of a FunctionType.

PrimitiveType
Represents the primitive types. Implements the flyweight pattern.

SimpleType
Is used by the parser, to represent explicitly written types. When visited it per-
forms a lookup on the identifier, and points to the TypeDeclaration.

TupleType
Is used to create a tuple of types. Has a next() and a TypeDenoter.

TypeDenoter implements isSubType() and isSuperType(), using double
dispatch. The base class returns false by default allowing each specific type to only
implement those who can return true. InferredType, SimpleType, and TupleType
are an exception to this. These types are ”utility” types, and the actual type compari-
son is performed on the type they hold. isSubType() is used for comparing types,
allowing inheritance. For types which have no inheritance, it checks if they are equal.
When calling isSubType(), it calls isSuperType() of the specific type, allowing
us to easily add new types by overloading isSuperType().

Before the TypeChecker begins traversing the AST, all explicitly written types
(such as the return and parameter types of MethodNodes) must be visited by the

TYPE CHECKER Page 101 of 140.

IdVisitor. These types must be visited, because the parser creates them as SimpleTypes.
SimpleTypes declaration is initially set to NULL. They must therefore be visited,
so a lookup can be performed on the id and the declaration can be set. While the
IdVisitor visits these nodes, it also adds the TypeDefinition of classes and enums
to the scope, sets up the standard environment, and decorates classes with the decla-
ration of their parent, if they have a parent.

9.3.1 Type checking

Once the IdVisitor completes its short traversal of the AST, the TypeChecker is
ready to begin.

Top level type checking

When the TypeChecker traverses the AST, it begins as a breadth-first traversal, until
it has visited all ClassNodes and EnumNodes. These two nodes must be visited before
members are visited, as their VariableDeclaration must be added to the top-level
scope in the event that a member, or body of a member requires their functionality.
After all ClassNodes and EnumNodes have been visited, the TypeChecker begins
visiting class members. Each ClassNode enters a new scope when they begin visiting
members.

Type checking members

FieldNodes must check if their id has previously been declared. If this is the case,
they report an error. Otherwise they add their declaration to the scope.

Classes can override their parent’s methods if the method signature matches the
parent class method. Therefore, if their id already exists in the scope, they must ensure
that their signature is the same as the parent method. If this is not the case, they report
an error. If there is no overriding, the MethodNode adds its declaration to the scope.
They then visit their siblings.

Once the member siblings have been visited FieldNode and MethodNode per-
form differently. For FieldNodes the type checker performs type checking on its
expression, if it has one. This is done by visiting the expression. Ultimately, visiting an
expression will update the expressions type. How this is done varies from expressions.
A more interesting expression, binary operations, will be detailed further down. Once
the expression has been visted, isSubType is called on the expression type, with the
FieldNodes declaredVariableType as the parameter, and reports an error if the
check fails.

MethodNodes are more interesting. First, the type checker enters a new scope, giv-
ing the scope the expected return type of the method. Then, the type checker begins
visiting the parameters on the MethodNode if any. Visiting a ParamNode ensures that
the parameter variable does not exist in the scope, add its VariableDeclaration,
and then visit the next parameter. With parameters added to the scope, the type
checker begins visiting the code body of the method, which is comprised of StmtNodes.

TYPE CHECKER Page 102 of 140.

Type checking statements

Visiting an IfStmt or a WhileStmt is similiar. The type checker ensures that their
conditional expression is of type bool, enters a new scope, and begin type checking
their code bodies. ExprStmt is simply a place holder for expressions, so the type
checker visits the expression.

Expressions of ReturnStmts can be null. In this case, the type checker creates a
void type comparison. Comparing return types is done in the IdTable, since the ex-
pected return type is held in its respective scope. IdTable will look upwards through
the scope until it finds a scope with a defined return type. The actual comparison is
done by ensuring that the expression is a subtype of the return type, using the same
method as the type checker to compare types.

The type checker will also ensure that a method ends on a return, or allow a void
method to return implicitly, by using a macro for visiting the next. The type checker
will also warn users of dead code, if ReturnStmt has a next value, indicating that
there are statements after the return, which cannot be accessed.

VarDeclStmt is the statement that declares variables. Assigning them immedi-
ately is optional, and the variable then may not have a type. If there is no type assigned
to a variable, they will return NULL, which, when compared using isSubType, will al-
ways return false. The type checker also checks that the variable has not been declared
previously in the scope, or in any higher level scopes.

Type checking expressions

Visiting expressions will always result in visiting one of the four primitive literals, int,
float, bool or string, or by visiting the VariableExpr. The four literals will set the
type to the type they each represent, whereas VariableExprmust visit its Variable
to get the VariableDeclaration. Once it has the VariableDeclaration it can
set its type to VariableDeclaration’s declaredReadOnlyVariableType. It is
necessary to look at the declaredReadOnlyVariableType, because all
VariableDeclarations implement it. Not all VariableDeclarations imple-
ment declaredVariableType. An example of one such VariableDeclaration
is the ClassNode. This indicates that the ClassNode’s identity cannot change type
e.g. you cannot assign a new value to the class name.

Before this of course it must visit its Variable. There are two different kinds
of Variables. The first is the simple Variable, which contains an Identifier.
When the type checker visits this Variable it must lookup the declaration in the
IdTable, and then set the Variable’s declaration to the lookups result. The second
Variable is a specialisation of Variable called AttributeAccessVariable. The
slightly over complicated name implies that this variable is not inside our current or
parent scopes. To access it the AttributeAccessVariable has provided an at-
tribute that the type checker must visit. The attribute itself is an expression and could
therefore be anything from a Variable to another AttributeAccessVariable or
even a CallExpr. Once the attribute has been visited, the type checker performs a
getAttribute call on the attribute’s type. getAttribute is very similar to the
lookup function on the IdTable. Instead of looking for the VariableDeclaration

TYPE CHECKER Page 103 of 140.

in the IdTable, it will look in the current type. The different TypeDenoters im-
plement their version of getAttribute. ClassType’s will look through their class
declaration for members matching the variable, EnumNode’s look through their labels
and so forth.

Another expression is the BinaryOperatorExpr. In groo, all binary operations
are handled like instance methods of the left hand side expression. Expression 9.1
would therefore be treated like expression 9.2 in groo.

Expr1 + Expr2 (9.1)
Expr1.op add(Expr2) (9.2)

To get the type information of the op_add method, the type checker must first per-
form a lookup on the operator, to get an id for the method. The type checker then calls
getAttribute on the first expression’s type. This returns a VariableDeclaration
which can be used to get the TypeDenoter of the declaration. With the method type
secure, the type checker must ensure that the ”method call” is correct, and it constructs
a FunctionType for comparison, with the type of the second expression as the pa-
rameter. Because the binary operation itself gives no indication of the return type,
the constructed FunctionType is given InferredType as the return type, so it will
automatically assume the return type of the acquired declaration.

This also means that if operator overloading was implemented in the future, the
getAttribute method could be used to get information about the operator type,
when performing operations on non primitive types, or when the primitive type op-
erators have been overloaded.

9.3.2 Identification Table

The TypeChecker makes use of an identification table, called IdTable, which helps
keep track of both type and variable declarations in their respective scopes. When the
TypeChecker starts, all of the basic primitives, such as bool, float, int, string,
and void are added to the global scope. This way the primitive types will always be
declared by default before type checking is performed.

This makes it relatively easy to plug new primitives into the standard environment,
should the need arise.

In addition, IdTable contains a class called Scope, which basically is a linked list.
Each Scope has a pointer to its parent. When enterScope() is called, a new scope
is attached to the linked list. Leaving the Scope is done by calling leaveScope(),
which removes the current Scope and sets its parent to be the current Scope. A
lookup on a variable or type declaration is performed at the current scope and then
recursively ’upwards’ by following the pointer to the parent Scope. Variable and
type declarations are stored in separate dictionaries. So, the insert() method is
overloaded for either case. This enables the programmer to declare variables with
type names, for instance the declaration of var int = 0 is possible.

Part V

Execution

104

CHAPTER 10

Interpretation

When a program has gone through contextual analysis without errors it is ready to
be executed. groo can currently be executed using two different techniques. The re-
cursive interpreter uses the AST to execute groo. And the virtual machine VROOM,
covered in the next chapter, uses the intermediate language, gril, which is translated
from a groo program by the code generator.

Interpreting a source program is to execute it immediately without first translating
it to low-level instruction code [Watt and Brown, 2000].

We have chosen to focus on two different approaches to interpretation: iterative
and recursive interpretation.

Iterative Interpretation

Iterative interpretation is used to execute a program consisting solely of simple in-
structions. It is a simple fetch-analyse-execute cycle, where a series of instructions are
fetched, analysed, and then executed [Watt and Brown, 2000].

Iterative interpretation with a virtual machine is explained in section 11.

Recursive interpretation

Recursive interpretation is needed to interpret more complex instructions - such as
statements and expressions. In contrast to iterative interpretation, recursive interpre-
tation works in two steps. The first step is parsing and analysing the program. The
second step is to recursively execute the program. The execution step can be imple-
mented using the visitor pattern, traversing the decorated abstract syntax tree. Recur-
sive interpretation often results in slow execution speed. This is one of the reasons why
recursive interpretation is not widely used in higher level programming languages
[Watt and Brown, 2000].

Implementing a recursive interpreter is a quick way of testing a programming lan-
guage.

10.1 groo Recursive Interpretor (gri)

gri is a semantics driven recursive interpreter. This means that we will use the same
concepts as in the operational semantics given in chapter 5.

Variables are saved in an environment, which has a pointer to a location where the
value is stored.

The sections below will describe the memory storage and how some of the more
complex nodes are interpreted.

105

GROO RECURSIVE INTERPRETOR (GRI) Page 106 of 140.

Variable Storage Allocation

The class loc is the primary storage class. It contains an instance variable of the base
class Value. The classes ObjectValue, FunctionValue, ConstructorValue,
IntegerValue, FloatValue, BooleanValue, and StringValue are all special-
isations of Value. This will allow loc to hold a pointer to the location of all variables,
objects and functions in memory.

env is the environment in which one or more locs can be stored. env is essentially
a linked list where each node contains a loc and an Identifier. A look up can
be performed in an env and the location of the Identifier will be returned. An
example of the association between env, loc, and Values can be seen in figure 10.1.

Interpreting a groo program begins with an empty env. All ClassNodes are then
visited and stored in the env. The interpreter holds a number of instance variables
used to store and return values when visiting the AST.

• env: This variable holds the environment of the scope the interpreter is currently
in.

• loc: Variable used to return a location.

• retenv: Variable used to return an environment env.

• result: Variable used to return the Value of a return statement.

• retval: Variable used to return a Value.

Memory Management

The semantics for groo does not specify how memory should be deallocated. gri uses
reference counting to determine when memory can be released. This approach have
been chosen because it is simple to implement. The disadvantage is the overhead of in-
crementing and decrementing the reference counter, however, recursive interpretation
is already slow. Furthermore, reference counting cannot release memory if it contains
cycles in the references. [Aho et al., 2006, section 7.5.3]

All Value will be given a reference counter, when a loc is assigned a new Value,
it will decremented the counter of the old Value, and increment the counter of the
new Value. If a counter reaches zero, no loc is currently pointing to that Value and
it can be safely deleted.

When the program exits a scope all variables created in that scope are discarded.
In order to delete the locs and Values that are no longer in use envs have a reference
counter referring to each element in its list; every time env is updated, the reference
counter is incremented. If a scope is entered, a copy of the environment env, with an
incremented reference counter is saved in a temporary environment env1. When the
program leaves the scope env will decrement its reference counter. This will cause
the element env is referring to, to be removed, decrementing the reference counter
of the element pointing to the now nil-element. This causes all new entries in the
environment to be recursively deleted, and thus env must again refer to env1.

GROO RECURSIVE INTERPRETOR (GRI) Page 107 of 140.

If the reference counter reaches zero the env is deleted along with its loc. The next
env in the list then removes the reference to the deleted env and its reference counter
is decremented. If a loc is deleted the Value is no longer referred to, and its reference
counter is decremented, and is deleted if it reaches zero.

Figure 10.1: An example of the associations between environment, location and vari-
ables. The number in the upper left corner denotes the reference counter.

Class Declarations

Classes are forward-declared by updating env to point to new locations for each class.
After each class has been declared, a new constructor value is created containing the
class members and the env.

Class Members

Class members are fields and methods. env is updated with the name of the member
pointing to a new location. As members are also forward declared, env is updated for
each member before creating the values.

Fields can be assigned an expression, and if so, the expression is accepted and the
return value is stored in the location of the field’s id.

The value of a method is a function value, containing the body and parameters of
the method and the current env.

GROO RECURSIVE INTERPRETOR (GRI) Page 108 of 140.

Statements

Statements can either declare new variables or change the values of existing vari-
ables. If- and while-statements evaluate their condition and execute the corresponding
branch. The resulting env is then saved, so that any changes made in the body of the
if- and while-statements can be discarded afterwards.

All statements expect the return statement to have a next-pointer to the next state-
ment, and this statement is evaluated at the end of the current statement’s execution.

Variable Declarations

Variable declarations will declare new variables. env is thus updated with a new
location for the id of the variable. A value is given to this location, if an expression
has been assigned to the variable. If so, the expression is evaluated, and the value is
retrieved from retval.

Expressions

Expressions can only change values of already existing variables. This can either sim-
ply be by assigning the value of an existing variable, or by performing operations on
variables or literal values. The result of evaluating an expression is saved in retval.

For the simple binary and unary operators, the expressions are evaluated, and the
apply-function is called using the operator as an argument. The apply-function imple-
ments binary and unary operations for primitive types.

Call expressions will have to find the class function, evaluate the body, and then
return the result. Because the body can contain statements that can declare new vari-
ables, we save a local version of the env before evaluating anything else. The function
to call is found by evaluating the callee of the expression. If this is a VT_FunctionValue
it is a call to a function or method. On the other hand, if it is a VT_ConstructorValue
it is a call to a constructor.

For a call to a function or method we find the env of the function, which contains
the variables accessible from within the function. The arguments and parameters are
then evaluated and declared in the env of the function. A new location is created for
the parameter, and the value found by evaluating the argument’s expression is saved
at that location. After all the arguments and parameters have been declared in this
env, the body of the function is executed in it. The result, found in result is saved
in retval.

If the call expression was a constructor we would evaluate the body of the construc-
tor in the env of the constructor, as with functions and methods. The return value is
then an ObjectValue with the env of the constructor, containing the members of the
object.

A local version of env saved at the beginning is set to the working env again, to
discard all changes that might have been made.

GROO RECURSIVE INTERPRETOR (GRI) Page 109 of 140.

Variable Expressions

Variable expressions are used to find the locations of variables in env. The location
of a simple variable is found by looking up its id in the current env. But a variable
expression can also be a sequence of calls to methods and fields. Such a variable ex-
pression has an expression for the first part, and ends in an id. The location is found
by accepting this expression, and thereby updating retval to contain an env, which
is an object value. The location can then be found by looking up the remaining part of
the variable expression, id, in this env.

Literals

Literals are either integers, floats, bools or strings. A new value of with the corre-
sponding type is created from the value of the literal, and saved in retval where it
can be accessed by the called expression.

CHAPTER 11

VROOM, Virtual groo Machine

11.1 A Virtual Machine for Groo

A brief discussion of the advantages and disadvantages of a virtual machine.
A virtual machine is a software implementation of a machine executing an inter-

mediate language. Compared to the recursive interpreter a virtual machine may run
almost ten times faster [Watt and Brown, 2000]. When a program runs on the virtual
machine, the machine-specific architecture is abstracted away, so the semantics of the
program remain the same, regardless of what hardware it is running on.

This means that instead of rewriting and compiling a program inorder to port it to
a new platform, a virtual machine for the new platform is the only thing that needs
to be ported. In the early development phases of a programming language it can be
an advantage to compile the code to an intermediate language, rather than directly
to machine code, as this requires much less work. In some cases a suitable virtual
machine may already exist. This saves the time it takes to create the intermediate
language and interpreter from scratch [Watt and Brown, 2000].

The primary reason for creating a virtual machine for groo is to be able to execute
groo programs more efficiently. With a proper intermediate language this can be done
by using an iterative interpreter, rather than a recursive interpreter, as seen earlier.

Figure 11.1 illustrates how a groo program may be translated to the intermediate
gril language (GRoo Intermediate Language) and interpreted on the machine, M.

Figure 11.1: A tombstone diagram displaying the compilation and interpretation of
the groo program, P.

110

RUNTIME ORGANISATION IN VROOM Page 111 of 140.

11.2 Runtime Organisation in VROOM

In this section it is described how a groo program is organised at runtime within the virtual
machine. VROOM is a stack machine, which means that variables are pushed and
popped of a stack in almost every instruction. In order to easily support closures, used
for higher-order and anonymous functions, we have decided to allocate stack-frames
(from now on referred to as frames) on the heap as a linked list of frames. Though,
we will also have an expression stack for evaluating expressions, so that memory for
temporary variables need not be allocated on the frames. Therefore the frames can be
allocated with a constant size.

VROOM uses an accurate tracing garbage collector to manage memory. To facili-
tate this feature VROOM distinguishes between reference types and value types. This
results in two expression stacks (stacks used for evaluation expressions), a stack for
reference types and a stack for value types. Frames are also divided into two sections,
a section where references types may be stored and a section where value types may
be stored.

In the implementation this is done by letting a frame pointer point into the frame
where the two sections meet. Then reference types can be located by subtracting their
offset from the frame pointer, and value types can be found by adding their offset
to the frame pointer. This is illustrated in figure 11.2, which gives an impression of
how things are organized at runtime. Hexadecimal numbers are pointers, and the
arrows indicate what they are pointing to. Notice in figure 11.2 that the vtable pointer
on a object points to a segment of literals in the code store, and that this pointer is
considered a value type; this ensures that it will not be subject to garbage collection.

Figure 11.2: Organization of memory at runtime within VROOM.

GRIL, GROO INTERMEDIATE LANGUAGE Page 112 of 140.

11.2.1 Registers

VROOM is a stack machine with few registers. These registers are implicitly encoded
in the OpCode and are never specified explicitly. In table 11.1 the registers are listed.

Table 11.1: Registers in VROOM
Register Type Description
PC CodePoint The program counter, which points to the next in-

struction.
PBASE CodePoint Program base. This register remains constant and is

used as a pointer-offset for vtables.
F Frame* The current frame.
rCBASE Ref* The call base on the reference stack, used to return

from function calls and load arguments.
vCBASE Val* The call base on the primitive stack, used to return

from function calls and load arguments
rTOP Ref* A pointer to the reference at the top of the reference

stack.
vTOP Val* A pointer to the value at the top of the primitive

stack.
rBASE Ref* Base of the reference stack.
vBASE Val* Base of the primitive stack.

11.3 gril, groo Intermediate Language

Description of the groo intermediate language.

11.3.1 Instruction layout

An instruction is made up of an 8-bit operation code and 0-32 bit argument. There
are several ways of encoding arguments, depending on the operation code (OpCode).
Some instructions are followed by literals, where the argument specifies how large the
literal data following the instruction is.

[opcode]

8 bit
[arguments]

0 bit - 32 bit

Since an instruction can be mixed and matched with several combinations, depend-
ing on its purpose, we will elaborate on this in the following listing.

OpCode + CodePoint Typically used for a jump or conditional jump to a specific ad-
dress in the code store. These instructions have a length of 40 bits.

OpCode + Offset Typically used for loading or storing data from/to frame or object.
These instructions have a length of 24 bits.

GRIL, GROO INTERMEDIATE LANGUAGE Page 113 of 140.

Opcode + Depth Used for instructions that need to push a frame. Depth tells us how
many enclosing frames we must travel up in order to locate the desired frame.
These instructions have a length of 16 bits.

OpCode + Size Used for instructions that indicates that there is a literal in the code
store. These instructions have a length of 24 bits + the literal data that follows.

OpCode + Refs + Vals Generally used for instructions that allocate memory, here Refs
and Vals tell us how many references and values the object allocated must hold.
These instructions have a length of 40 bits.

11.3.2 Instruction Set

Table 11.2 lists the basic gril instructions. Instructions corresponding to the unary and
binary operators are listed in table 11.3. Opcode arguments have been abbreviated in
the table listings. An example of a small groo program and its gril representation, with
a detailed explanation of how the execution is performed can be found in appendix
B.2.

GRIL, GROO INTERMEDIATE LANGUAGE Page 114 of 140.

Table 11.2: Basic Instructions. Argument abbreviations: cp = 32bit codepoint, s = 16bit
size, d = 8bit depth and o = 16 bit offset, (r,v) = 16 bit number of reference type and 16
bit number of value types.

Opcode Args Description
jump cp Sets the program counter to the specified code point.
condjump cp Jumps to cp if the value on the top of the stack is 1.
returnR (r, v) Return a reference type as result from a function that was

given r reference and v value type arguments.
returnV (r, v) Return a value type as result from a function that was given

r reference and v value type arguments.
call (r, v) Call a function with r, v arguments, reference and value

types respectively.
frame (r, v) Set F to a new frame f with space for r reference and v value

types, set current F as parent for f .
pop Set F to the parent of current F.
epopR Pop reference of the reference stack
epopV Pop value of the value stack
pushF d Pushes the current frame onto the stack. If d > 0, follow the

frame’s parent chain.
eloadattrR o Take topmost reference of the reference stack, and push its o

reference attribute on to the reference stack
eloadattrV o Take topmost reference of the reference stack, and push its o

value attribute on to the value stack
estoreR o Store the topmost reference on the reference stack to the sec-

ond topmost reference on the reference stack with offset o.
estoreV o Store the topmost value on the value stack to the topmost

reference on the reference stack with offset o.
cmeth o Create function from o offset in the vtable in of the topmost

reference on the reference stack.
cfunc cp Pushes a closure onto the reference stack with a pointer to

the top frame and the code point, cp.
argload (r, v) Loads r, v arguments, reference and value types respectively

into the current frame.
halt Stop execution with topmost value on the value stack as exit

code.
new (r, v) Push new object, with space for r, v values of reference and

value types respectively, on to the reference stack.
loadl s Load s literals from code store following this instruction

onto the value stack.
vtable s Indicates a vtable of size s in the code store, the virtual ma-

chine should exhibit undefined behaviour if this instruction
is executed.

nop No operation, this instruction is skipped.
pushNULL Push 0 onto the reference stack.
dupR Duplicate top of reference stack.
dupV Duplicate top of value stack.

MOM: MARK-SWEEP OBJECT MANAGER Page 115 of 140.

Table 11.3: Operator instructions works by taking the two topmost values from the
value stack and operating on these as specified, pushing the result on to the value
stack. Instructions postfixed with capital R takes the values from the reference stack.

Opcode Meaning
iadd v′ := i1 + i2
isub v′ := i1 − i2
imul v′ := i1 · i2
idiv v′ := i1/i2
shiftl v′ := i1 � i2
shiftr v′ := i1 � i2
mod v′ := i1 mod i2
ieq v′ := i1 = i2
ineq v′ := i1 6= i2
ilt v′ := i1 < i2
ile v′ := i1 ≤ i2
igt v′ := i1 > i2
ige v′ := i1 ≥ i2
fadd v′ := f1 + f2

fsub v′ := f1 − f2

fmul v′ := f1 · f2

fdiv v′ := f1/f2

feq v′ := f1 = f2

fneq v′ := f1 6= f2

flt v′ := f1 < f2

fle v′ := f1 ≤ f2

fgt v′ := f1 > f2

fge v′ := f1 ≥ f2

and v′ := v1 ∧ v2

or v′ := v1 ∨ v2

eq v′ := v1 = v2

neq v′ := v1 6= v2

eqR v′ := r1 = r2
neqR v′ := r1 6= r2

11.4 MOM: Mark-sweep Object Manager

MOM is an accurate mark-sweep garbage collector for VROOM. We have chosen to
implement a garbage collector for VROOM, to demonstrate that groo can be imple-
mented with both reference counting and garbage collection. It also worth mention-
ing that garbage collection is also likely to perform better than reference counting, and
that garbage collection does not leak cycles, whereas reference counting does.

On the other hand, garbage collection does not exhibit the same locality as refer-
ence counting. The cost of reference counting is spread evenly throughout the execu-

MOM: MARK-SWEEP OBJECT MANAGER Page 116 of 140.

tion of a program, whereas a mark-sweep garbage collector stops the execution while
cleaning up. It should be noted that reference counting may cause more overhead than
garbage collection, however, this depends on the behaviour exhibited by a program.
A mark-sweep garbage collector causes overhead when it cleans up, while reference
counting causes overhead whenever a reference type is used, e.g. passed as parameter,
used in assignment, etc.

MOM is an accurate garbage collector, which means that at runtime it can distin-
guish between pointers and other data such as integers, which should not be consid-
ered pointers. Section 11.2 explains how reference types and value types are distin-
guished in VROOM.

11.4.1 Mark-Sweep Garbage Collection

MOM is a mark-sweep garbage collector which means that it performs clean-up in
two phases. First it marks every reachable heap allocated structure, which we shall
call heapstruct, then it releases every unreachable heapstruct [Aho et al., 2006, sec-
tion 7.6.1]. Following definition 6 an unreachable heapstruct cannot be accessed by
the program again. Thus, unreachable heapstructs can be safely deallocated.

Definition 6 A heapstruct is reachable in VROOM if it is directly or indirectly reachable
from either the reference stack or the F register.

Figure 11.3 shows a pointer to a heapstruct and the metadata within the heap-
struct. Whenever MOM allocates a heapstruct it sets the reachable bit to the global
TrueMeansReachable bit, and sets the fields refs and vals to the number of ref-
erences and values for which space has been allocated. MOM has a linked list of allo-
cations called allocations. When an allocation is performed, its next field is set to
allocations and allocations is set to a pointer to the newly allocated heapstruct.
This way a linked list of all allocations is maintained.

Figure 11.3: A heap allocated structure with available metadata.

CODE TEMPLATES Page 117 of 140.

When MOM is called to clean up, it flips the global TrueMeansReachable bit
and traces the reference stack and the F register. This means that it observes each
pointer that is not 0, and if the reachable bit of the heapstruct it points to is not
equal to TrueMeansReachable it flips this bit, and traces the references held by the
heapstruct. By following figure 11.3 the number of references held by a heapstruct and
a pointer to the first of these can easily be found.

When MOM has marked all the reachable heapstructs as described above, it per-
forms the sweep phase. Here MOM iterates through the list of heapstruct allocations,
while removing and releasing any unreachable heapstruct, i.e. a heapstruct where the
reachable bit is not equal to TrueMeansReachable.

MOM is called to clean up when a certain number of instructions has been exe-
cuted. While MOM is cleaning up, the iterative interpretation in VROOM pauses.

11.4.2 Future Optimisations

The current implementation of MOM obtains memory from calloc and releases it
using free. These calls are not very efficient given the number of memory alloca-
tions used in VROOM and gril programs. Faster memory allocation may improve
performance significantly. One way of improving the allocation and deallocation per-
formance would be to use free-lists, inspired by Boehm and Weiser [1988].

This could be done by allocating a large chuck of memory, m, and then split m
into a linked list, f , of fixed size memory blocks. Then whenever allocating a block of
memory smaller than or equal to the block size of f , a block from f can be removed
from f and returned. Whenever a block of memory is released; check if the block is
within m and if so, zero it and return it to f , instead of calling free.

This concept could be generalised and more than one free-list could be created,
whilst calloc could still be used for large arbitrary allocations. The free-lists might
also be improved even further using bit-fields to indicate which allocations are free
and used. Then a bit-field could also be used to hold the reachable bit for free-list
allocations during the mark phase, allowing reachable to be removed from the
allocations list.

This is likely to improve performance considerably because it will reduce the en-
tries in the list of allocations and reduce the time needed to allocate memory. Due
to the way all stack-frames are heap allocated, these improvements will improve the
performance for small allocations, which are used often in VROOM.

11.5 Code Templates

Code templates can be used as a tool to translate high-level code into an intermedi-
ary format, without introducing too many specifics about the actual implementation.
Many of the opcodes are used in the templates and some are abstracted away. We
introduce abstract operations, such as declare, evaluate and execute in the code tem-
plates. This allows us to keep code templates relatively simple, since the immediate
constituents have their own code templates. Note that these templates do not strictly

CODE TEMPLATES Page 118 of 140.

follow the abstract syntax, as we use code templates to assist and document the imple-
mentation, rather than formalizing the behaviour. Nevertheless, it could be interesting
to formalize these code templates and perhaps use them to show equivalence with the
semantics.

Some code templates require unknown forward jumps to labels or addresses to be
declared. This is solved by allocating a slot in the code store and storing a pointer to
that location. When the address is known, the operation can be patched with the cor-
rect label or address. We introduce four auxiliary functions, refs(x), vals(x), size(x)
and offset(x). size(x) returns the size of a vtable for the methods in a class. The func-
tion refs(x) returns the number of reference type variables in params, args, members
or stmt, used for allocating frames and objects. The function vals(x) is similar to
refs(x) except it counts the number of value type variables. The function offset(x)
gets the appropriate offset for instance variables and methods.

In this section we have listed selected code templates for each syntactical category.

template 1 Groo Program
execute [[decls]] =

l̄: vt
s̄s: jump s̄

vtable size(decls)
v̄t: c1...cn
s̄: pushf 0

m̄c: cmeth offset(main)
call 0, 0

m̄m: cmeth offset(main)
call 0, 0
halt
declare [[decls]]

Code template 1 is the first code template to be executed. The first instruction to be
emitted is the vtable location, vt, this is vtable that contains all constructors. Then the
vtable is skipped by jumping to s̄, where the constructor for MainClass is called and
the method main is executed. The label v̄t points to the constructors, c1...cn, for each
declared class. This allows constructors to be called globally.

After the halt instruction has been emitted, the declarations are evaulated and
added to the code store. In the actual implementation we save m̄c and m̄m for later,
in order to patch cmeth instructions with the correct code point offsets while visiting
class declarations. In the code template, however, this information is provided by the
offset(x) function.

CODE TEMPLATES Page 119 of 140.

Declarations

template 2 Class Declaration
declare [[class id: members ; decls]] =

vtable size(vt)
v̄t: m1...mn

c̄: loadl 1
v̄t
new refs(members), vals(members)
evaluate [[∀ type id = e ∈ members]]
return 0
declare [[∀ type id (param): S ∈ members]]

In template 2 the first label v̄t is the vtable for the class, or rather code points for each
method. First fields are evaluated, then methods are evaluated.

template 3 Field Declaration
evaluate [[type id = e]] =

dupR
evaluate e
estoreV offset(id)

Template 3 shows how instance variables are declared. Here, offset(x) locates the
correct field. If the field is declared without a value no action is performed in the code
template. If the expression e evaluates to a reference type the operation estoreR is
used instead of estoreV.

template 4 Method Declaration
declare [[type id (params): S]] =

frame refs(S), vals(S)
argload refs(params), vals(params)
execute [[S]]

Methods are declared as shown in template 4. The instruction argload loads the
arguments from call base into the current frame. The offsets are implicitly provided
because parameters are always the first variables in a frame.

CODE TEMPLATES Page 120 of 140.

Statements

template 5 While Statement
execute [[while e : S1; S2]] =
j̄: jump h̄
ḡ: frame refs(S1), vals(S1)

execute [[S1]]
pop

h̄: evaluate [[e]]
condjump ḡ
execute [[S2]]

Code template 5 for the while statement is devised in such a way that the condition
is evaluated by jumping to the h̄ label. If the condition evaluates to true, the code
starting at label ḡ is executed.

template 6 If-Else Statement
execute[[if e : S1 else : S2; S3]] =

evaluate [[e]]
ī: condjump ḡ

frame refs(S2), vals(S2)
execute [[S2]]
pop

j̄: jump h̄
ḡ: frame refs(S1), vals(S2)

execute [[S1]]
pop

h̄: execute [[S3]]

Template 6 shows how the if-else-statement may be translated. The condition e is
first evaluated. The if-statement without the else-clause is similar. The thing to notice
about this template is that the order of which S1 and S2 appear has been reversed. This
is because condjump only jumps if the condition evaluates to true and the else-clause
must always be executed if that is not the case. The jump at label j̄ ensures that S1 is
skipped. Finally, the next statement S3 is evaluated.

template 7 Return Statement
execute[[return e]] =

evaluate [[e]]
returnV refs(param), values(param)

In template 7 the value of the expression is evaluated and the number of arguments
to pop off the stack are given by the refs, vals functions. This template omits the small
detail that returnR is used in place of returnV if returning a reference type.

CODE TEMPLATES Page 121 of 140.

Expressions

template 8 Assignment Expression
execute[[ve = e]] =

evaluate [[ve]]
evaluate [[e]]
estore offset(ve)

Template 8 shows how an assignment is translated. The offset(x) function provides
the correct offset for the assignee.

template 9 Binary Operator Expression
execute[[e1 op e2]] =

evaluate [[e1]]
evaluate [[e2]]
iadd

In template 9 the two expressions are first evaluated and the instruction for the
operation is called, here iadd should be replaced with the correct instruction, if the
binary expression isn’t an integer addition.

template 10 Anonymous Function Expression
execute[[(param)-> id : S]] =
j̄: jump n̄
s̄: frame refs(S), vals(S)

argload refs(param), vals(param)
execute [[S]]

n̄: pushf 0
cfunc s̄

Template 10 is similar to template 4. Yet, here the anonymous function is allocated
and it is pushed onto the stack in the same template.

As mentioned earlier, these code templates are helpful when designing instruc-
tions. Laying out the basic foundation for the code templates in advance eases the
implementation. Of course, the actual implementations tend to be longer and more
complicated than the templates, but exhibit equivalent behaviour. In this case, our
code generator implements the code templates without significant derivation. It does,
however, require a visitor to be run before actual code generation, i.e. the allocation
visitor must decorate the AST with information regarding vtable entries, which in-
cludes the number of reference type variables and value type variables, respectively.

Another useful feature is that code templates can be used to informally bridge the
operational semantics to the implementation. We are basically defining how a given
production of the abstract syntax is executed on the virtual machine. Though, these

CODE TEMPLATES Page 122 of 140.

code templates are not defined well enough to be used as a formal method in their
current state.

11.5.1 The Allocation Visitor

Before code generation can begin, groo must decorate the AST with information re-
garding the allocation of vTables, references, and values.

The allocation visitor makes use of the class AllocationTable to allocate
VariableDeclarations and manage scope conditions.

Allocation Table

The AllocationTable contains a scope, the root scope, and methods to enter and
leave a scope, return the root frame allocation, and return the parameter allocation.

A scope holds the parameter allocation, frame allocation and the depth of the cur-
rent scope. It also contains a next, which points to the scopes parent.

Whenever allocate is called, it increments either the current scope’s frame’s
vTableEntries, referenceEntries, or primitiveEntries. Which one depends on the
VariableDeclaration that is being allocated. If the VariableDeclaration is
vTable allocated, the vTableEntries are incremented. If it is not vTable allocated, the
allocation table checks if the type of the variable is a reference type or not, and incre-
ments the appropriate counter.

enterScope creates a new scope, setting the old scope as its parent. leaveScope
on the other hand returns the current scope’s FrameAllocation, which is intended
to be set on the current VariableDeclaration. It also deletes the current scope,
after updating the scope to be the parent scope.

Visiting The AST

The allocation visitor’s objective is to visit all VariableDeclarations. When the
allocation visitor visits a VariableDeclaration, it will allocate the
VariableDeclaration. Furthermore, the allocation visitor will also manage the
scope structure, entering and exiting scopes as needed.

In all nodes containing parameters, the allocation visitor must record the
ParamAllocation as well, which is similiar to the FrameAllocation, except it
lacks the vTableEntries counter. A special case is the return statement, which also
needs to know the ParamAllocation for its scope.

Part VI

Closing

123

CHAPTER 12

Discussion

In the following we will discuss the pros and cons of some of the decisions made during the
development of the groo language.

Semantics

Looking back at the process of this project, we can conclude that we would have been
well served by formalising groo earlier in the project. The formalisation of a proper
semantics caused a number of changes in the grammar of the language - and conse-
quently the abstract syntax tree. Needless to say, the semantics enabled us to define
the language precisely, which got rid of a lot of uncertainty surrounding the imple-
mentation.

There is no distiction between fields and methods. This means that fields can act
as functions if they are decared as one. It also means that both are implemented as
closures, and subsequently each instance will have its own local version of the class
methods, instead of pointing to a shared one. Obviously this is inefficient in terms of
performance.

Syntax

Significant whitespace can be an issue in some cases, as the text editor used may insert
a space, which could change the indentations. The parser will give feedback indicat-
ing where the syntax error is located, allowing the programmer to remove the extra
space symbol. It could be necessary to fix this every time a program is written, to the
annoyance of the programmer. It can also be argued that significant whitespace poten-
tially lowers readability for large projects. In contrast for small code segments; forcing
significant whitespace can improve readability for programmers not familiar with the
code. It also forces programmers to keep methods small, maintaining the benefit of
small code segments.

One could argue that the choice to prohibit multiple statements per line, yet allow
multiple variable declarations per line, introduces inconsistency into the language.
Sequential statements could be introduced, for example as S1;S2. Introduction of se-
quential statements would call for an ”end of statement”-mark, for example the semi-
colon, as is used in many other languages. This would, however, introduce yet another
form of inconsistency, as statements do not otherwise mark their conclusion.

Building Everything From Scratch vs. Using Tools

A lot of effort was put into constructing a lexer generator as well as a parser generator
from scratch. Obviously, we could have used an existing and well-established tool to

124

CHAPTER 12. DISCUSSION Page 125 of 140.

tokenize and parse program code. This would have saved time, as we would not have
had to debug the generators and could have tested the grammar at an earlier stage.

On the other hand, it has given valuable experience and insight to lexing and pars-
ing algorithms. It has also given us an understanding of writting grammar properly,
both to avoid parsing conflicts, and to solve conflicts correctly. Had we not gained this
understanding, we would likely have implemented various hacks to get the desired
result. The lexer we implemented is also very fast, which may prove useful if we were
to integrate it into an editor.

Language Priorities

In its current state, the groo language lacks object oriented features such as information
hiding. This could have been prioritised higher, instead of putting so much work into
enabling higher-order and first class functions. These two language features have also
influenced the language a great deal, since we made a design choice to use closures
for both function types and instance methods.

The grammar and type checker support enumeration. However, enumerations
have not been implemented in the interpreter nor the virtual machine. Enumerations
could have been sacrificed for other more important features, such as inheritance and
arrays. Specifically, the virtual machine supports executing inheritance, however, the
type checker has some issues with type inference. These issues could have been solved
had the time spent on enumerations been allocated to inheritance instead.

Only a single conditional branch and a single loop statement were created to min-
imise the control structures in groo. More complex structures such as ”for” statements,
”switch” statements and ”do while” statements were omitted to save time. These,
more advanced control structures, can also be simulated with the current control struc-
tures.

Implementation Languages

We used Python to generate the C++ code for the lexer and parser. With Python it was
relatively straightforward to implement the algorithms needed to generate a syntacti-
cal analyser. We did, however, have to optimise a lot of the code to get reasonably fast
execution speeds for the generator. Nevertheless, performance was not crucial for the
generator, as it is only run when the grammar or the tokens have been modified.

We implemented the compiler in C++. The C++ implementation is efficient and
enables many low-level optimisations to be implemented in, for instance, the virtual
machine. C++ also allows multiple inheritance which has simplified our AST. This
language can, however, be difficult to write code in. Mishandling pointers can lead
to very subtle errors, which are hard to debug. There is also no garbage collection,
causing our implementation to have an odd memory leak here and there.

CHAPTER 13

Future Work

This section describes improvements that can be made to the groo language.

Sub-classing Inheritance

Sub-classing inheritance is possible in a groo program, but there is an issue with the
type inference algorithm, which must be solved in order to fully support inheritance.
Inheritance complicates type inference of variable declarations, since we have to solve
the case where there may be multiple type candidates and we must find the minimal
solution with the correct concrete type.

Both the operational and static semantics for groo will require some changes to
enable inheritance. To begin with, this would require a modification of the abstract
syntax to be able to specify a super class. Rules to recursively look for variables in the
parent classes would need to be specified, as well as rules to ensure type safety with
regard to inherited types.

Overloading

Method overloading allows us to have an arbitrary number of methods defined with
the same name in a class, but with different arguments.

Operator overloading, however, can occasionally make code unreadable, e.g. if
commonly used operators are overloaded and the meaning is not clear. It can make
code more concise if it is not abused. For example, it could make sense to overload the
arithmetic operators for objects representing vectors as this is a natural application of
the concept.

There is currently a basic framework for overloading operators in the type checker.
When type checking binary operators, a lookup will be performed to get type infor-
mation for the operator. Type information for the standard operators is pre-loaded as
part of the standard environment.

If overloading was to be implemented, the identification table would have to be
modified, to allow for multiple occurrences of a method with the same name. An
OverloadedType could be introduced, which would hold all the possible results of
a getAttribute call. isSubType would then reduce the possibilities.

Type Coercion and Conversion

Type conversion is the act of changing the type of variables, also called typecasting.
Type coercion is when this typecast is performed implicitly. Type casting and coer-
cion may be beneficial when programming with numbers with varying precision. For

126

CHAPTER 13. FUTURE WORK Page 127 of 140.

example, when multiplying a floating-point number with an integer. There is the com-
mon case when there is the need to perform division with an integer as the denomi-
nator, which must be converted to a float to avoid obvious rounding errors due to loss
of precision. Currently typecasting is not possible in groo and neither is coercion as it
will result in a type error.

To allow the programmer to manually typecast, we would need to introduce a syn-
tax for it. One approach could be the c language, where the explicit typecast is placed
in parenthesis preceding the expression. An other way could be to use a method-like
syntax, such as (1+2).toType(float). The latter approach is perhaps more ex-
planatory, but may make expressions more complex than the first approach. Other
languages, such as C#, also implement the as to perform an explicit typecast.

Type coercion would have to decide what type the immediate constituents of an
expression must be converted to. We would have to introduce some kind of ordering
on the primitive numerical types to be able to determine this. We could propose the
following ordering: int ≤ float. By default we would want the expression to evalu-
ate to the type with the most precision. When we assign a value of greater type than
the declared type of the assignee, for instance x = 0.5f, where x was previously de-
clared to be of type int, we should be explicit, because we are performing a downcast
in the assignment.

The type checker would have to make sure that a type cast is safe. Obviously, many
type conversions should not be legal. For instance, converting an integer to float is le-
gal, whereas from float to boolean is not. The typecast operation would also introduce
some complexities when converting objects from one type to another. Introducing
semantics to deal with this kind of operation may be very helpful.

Arrays, Lists and Tuples

Arrays, lists and tuples are groupings of entities. Working on a set of items is a very
common task in any programming language, and arrays and lists are often used to do
this. Tuples are groupings where the entities are not necessarily of the same type. This
can be used to group unrelated items to return multiple values from a function. The
benefit of this is that one is not required to define a new class to make this grouping
possible.

Again, a syntax would need to be introduced for these data structures. Even
though arrays and lists work very differently, a common syntax could be used for
both to add consistency when working with them. Accessing an item within a list
or array could have the form: list[i]. Moving to the next or previous item could
look like list[i++] or list[i--], respectively. Instantiating arrays and lists could
have the syntax: var list[4] = {1,2,3,4} or var list = {1,2,3,4}, re-
spectively, where the array can only hold four values.

String Manipulation

Easy string manipulation would be useful in a web programming language. For
proper string manipulation we would need to support some kind of arrays. Strings

CHAPTER 13. FUTURE WORK Page 128 of 140.

could be an array of characters, which could be accessed in a fashion similar to arrays
and lists. We could introduce a more specialised string syntax for strings and grouping
data structures. Selecting sub-strings could have the form string[:2-4:], which re-
turns a substring containing the entire string except the fourth character (indexed by
3). Searching for a sub-string in another string could be done in the following fash-
ion: abracadabra["ra"] that returns (2,9) as a tuple of the indexes where the
sub-string occurs.

Null References

Currently object variables will always have to reference an object. It is very useful for
a programmer to indicate that an object variable points to null or whatever name the
null pointer is given in a particular language. For instance, if the programmer wants
to access an object the variables referencing that object will have to point to something
else otherwise unknown memory is going to be used. Changing the variable to NULL
allows the programmer to test if the object the variable holds a reference to still exists.

Integrating HTML

Allowing HTML to be written in between code fragments could offer a scripting-like
approach to creating web applications. The HTML mark-up should be ignored, per-
haps by inserting escape keywords to indicate that the parser should ignore certain
blocks. This would enable code to be embedded directly into the HTML mark-up and
the programmer would not have to write all HTML programatically.

CHAPTER 14

Conclusion

We set out to create a language with a clear syntax and a set of minimalistic abstrac-
tion facilities. We implemented implicit typing of variables in order to aid readability
and writeability of groo programs. Some of the abstraction facilities, such as objects,
branching and control flow structures, higher-order- and first class functions, were
implemented, whereas other important features need more work. For example, with
proper support for strings, sub-classing and arrays, the language may offer a more
mature and realistic application for web development.

We formalised the programming language and its type system with an abstract
syntax, operational semantics, specifically big-step semantics, and static semantics al-
lowed us to formalise the programming language and its type system. However, there
is still work to be done in this area, as the type inference rules for implicitly typed
variables require additional specification. Moreover, sub-classing is not described in
the semantics, but it has been implemented in the language. Some object-oriented lan-
guage features, such as information hiding, are still open issues in our language, both
semantics and implementation-wise.

We were able to execute programs written in the groo language by means of recur-
sive and iterative interpretation in the form of a virtual machine. The goal here was to
ensure that the implementation defined program behaviour equivalent to the seman-
tics of the language. The recursive interpreter makes use of abstractions that are very
similar to the formal entities introduced in the semantics. This makes it relatively easy
to follow the execution steps and verify that the interpreter is semantically equivalent.

With regard to the virtual machine, the code templates proved very useful for en-
suring that the semantics were preserved during implementation. However, these
code templates could have been strictly formalised using the abstract syntax. In addi-
tion, the virtual machine offered a more reasonable execution model, since it is more
efficient and employs a garbage collection strategy.

We have shown that it is possible to create a statically typed object-oriented pro-
gramming language from the ground up. This was accomplished by producing a
grammar for the language and a lexer and parser which enabled us to translate pro-
gram text into an abstract syntax tree. With this we were able to implement a type
checker, which uncovers the type errors formalised by the static semantics for groo.

129

Part VII

Appendices

130

APPENDIX A

Code Samples

1 class MainClass:
2 int n = 7
3 int main():
4 facr (n)
5 fibr (n)
6 fac(n)
7 fib (n)
8 var anonFac = (int n)−>int:
9 return fac(n)

10 var fib = fib
11 anonFac(n)
12 fib (n)
13 return 0
14 int facr (int n):
15 if (n==0):
16 return 1
17 return n * facr (n−1)
18 int fac(int n):
19 var f = 1
20 while (n>1):
21 f = f *n
22 n = n−1
23 return f
24 int fibr (int n):
25 if (n < 1):
26 return 1
27 return fibr (n−2) + fibr (n−1)
28 int fib (int n):
29 var f0 = 1, f1 = 1, f = 1
30 while(n > 0):
31 f = f0+f1
32 f0 = f1
33 f1 = f
34 n = n−1
35 return f1

Listing A.1: Groo implementations of the Factorial and Fibonacci functions. This ex-
ample shows the use of recursion, anonymous functions and function pointers.

131

APPENDIX A. CODE SAMPLES Page 132 of 140.

1 class MainClass:
2 int main():
3 html(”<html><head>\n<title>My Webpage</title>\n</head><body>\n”)
4 html(”<h1>My homepage</h1>\n”)
5 html(”<p>Welcome...</p>\n”)
6 html(”<h3>My interests</h3>\n”)
7
8 var data = ”\n”
9 data = data + li (” Animals”)

10 data = data + li (” Food”)
11 data = data + li (” Programming”)
12 data = data + ””
13 data = data + img(”images/hello.gif ”,” Hi there”)
14
15 var div = tag(” div”)
16 html(div(data))
17
18 var i = 1
19 var rows=””
20 var table = tag(” table”)
21 var options = Options()
22 options.cssClass = ”odd”
23 var oddrow = tagattr(” tr ”, options)
24 var row = tag(” tr ”)
25 var cell = tag(” td”)
26 while(i <= 5):
27 if (i %2==0):
28 rows = rows + row(cell(” equal row”))
29 else:
30 rows = rows + oddrow(cell(”odd row”))
31 i = i +1
32 html(table(rows))
33
34 html(a(”http : // intranet . cs.aau.dk”,” intranet . cs”))
35 html(a(”mailto: foo@bar.com”,”email me”))
36
37 html(”</body></html>”)
38 return 0
39
40 void html(string s):
41 prints (s)
42
43 (string,Options)−>((string)−>string) tagattr = (string el, Options opt)−>((string)−>string):
44 var o = opt.attr ()
45 var f = (string s)−>string:
46 return ”<”+el+o+”>”+s+”</”+el+”>\n”
47 return f
48

APPENDIX A. CODE SAMPLES Page 133 of 140.

49 (string)−>((string)−>string) tag = (string el)−>((string)−>string):
50 var f = (string s)−>string:
51 return ”<”+el+”>”+s+”</”+el+”>\n”
52 return f
53
54 (string,string)−>string img = (string src,string alt)−>string:
55 return ”\n”
56
57 (string,string)−>string a = (string href,string s)−>string:
58 return ””+s+”\n”
59
60 string li (string s):
61 var f = tag(” li ”)
62 return f (s)
63
64 class Options:
65 string cssClass
66 string attr ():
67 return ” class=\’”+cssClass+”\’ ”

Listing A.2: Groo implementation of a simple web page where various html elements
are outputted.

APPENDIX A. CODE SAMPLES Page 134 of 140.

Listing A.3: Output from code sample A.2
<html><head>
< t i t l e >My Webpage</ t i t l e >
</head><body>
<h1>My homepage</h1>
<p>Welcome . . . </ p>
<h3>My i n t e r e s t s </h3>
<div>
< l i >Animals</l i >
< l i >Food</l i >
< l i >Programming</l i >

</div>
<tab le><t r c l a s s = ’odd ’ ><td>odd row</td>
</tr>
<t r><td>equal row</td>
</tr>
< t r c l a s s = ’odd ’ ><td>odd row</td>
</tr>
<t r><td>equal row</td>
</tr>
< t r c l a s s = ’odd ’ ><td>odd row</td>
</tr>
</table>
<a hre f = ’ ht tp :// i n t r a n e t . cs . aau . dk’> i n t r a n e t . cs
<a hre f = ’ mai l to : foo@bar . com’>email me
</body></html>

APPENDIX A. CODE SAMPLES Page 135 of 140.

1 class MainClass:
2 int main():
3 var dice = Dice()
4 dice. initialize (NewRngFac)
5 return dice. roll ()
6
7 class Dice:
8 void initialize (void−>RngFac rngFactory):
9 var fac = rngFactory()

10 rng = fac. rng
11 int−>int rng
12 int seed = 5
13 int roll ():
14 seed = seed + 1
15 return rng(seed)
16
17 class RngFac:
18 int rng(int seed):
19 return seed * 6 + 5
20
21 class NewRngFac extends RngFac:
22 int prev = 0
23 int rng(int seed):
24 prev = seed
25 return prev + (prev = seed) * 7

Listing A.4: Groo implementation of a random number generator. This example
demonstrates inheritance (NewRngFac <: RngFac) a constructor (NewRngFac) can be
passed as a function type. Note: this code does not generate random numbers in its
current form.

APPENDIX B

Groo Intermediate Language Example

1 class MainClass:
2 int main():
3 return 40 + 2

Listing B.1: A simple groo program containing just MainClass.

136

APPENDIX B. GROO INTERMEDIATE LANGUAGE EXAMPLE Page 137 of 140.

0: 12
4: jump 16
9: vtable 4:

12: 42
13: 0
14: 0
15: 0

16: pushF 0
18: cmeth 0
21: call 0, 0
26: cmeth 0
29: call 0, 0
34: halt
35: vtable 4:

38: 59
39: 0
40: 0
41: 0

42: loadl 1:
45: 38
46: 0
47: 0
48: 0

49: new 0, 0
54: returnR 0, 0
59: frame 0, 0
64: argload 0, 0
69: loadl 1:

72: 40
73: 0
74: 0
75: 0

76: loadl 1:
79: 2
80: 0
81: 0
82: 0

83: iadd
84: returnV 0, 0

Listing B.2: gril code of B.1, 89 bytes.

Listing B.2 shows the gril representation of listing B.1. This is a simple example
of a program that gives us the result of adding ’2’ to ’40’. n :, where n is an integer,
denotes what is written in the nth byte of the gril code. Notice that following a loadl
or vtable instruction there is some literal data; these are indented and prefixed with
a byte number.

With this in mind, we can analyze the program. At byte 0 we can see the top level
vtable, on byte 4 the first instruction is placed. From 4 we jump to 16, where the

top level frame is pushed onto the reference stack. The next instruction is a cmeth
instruction with offset, 0. This means that a closure for function is pushed with offset,
0, in the vtable of the topmost reference. The vtable for the topmost reference is 12,
because we just pushed the toplevel frame onto the stack at position 16.

If the vtable is placed in 12 and we take offset 0 from that, results in reading the
code store at the literal value of position in positions 12-15. This is 42, remember this,
because the next instruction is a call instruction. It jumps to 42 where the literal 38 is
loaded, then a new instruction in position 49 is executed, pushing a new object with
38 as vtable onto the stack. At line 54 this newly created object is returned. And we go
back to where we called from i.e. position 21. Now we have just created an instance of
the MainClass.

At position 26 a closure created from topmost object and code store position in its
vtable with offset 0, is pushed onto the reference stack. The offset 0 in the vtable (at
position 38) of the MainClass gives code store position 59. Calling a closure created
with this, creates a new frame without variable allocations, this could be removed by
optimisation, as could the following argload, where no arguments are loaded.

At byte 69 we load ’40’ onto the value stack, followed by the literal ’2’ on the value
stack. Then iadd, adds the two integers and leaves the result on the value stack.
Having done this, a value is returned from a parameterless function at byte 84.

This returns brings the execution to byte 34 where the execution halts, returning
topmost value as the exit code. Thus, we have just ended execution with the result,
’42’.

Bibliography

Brad Abrams and Krzysztof Cwalina. Framework Design Guidelines: Conventions,
Idioms, and Patterns for Reusable .NET Libraries. Addison-Wesley Professional, 2nd
edition edition, 2008. ISBN 978-0321545619.

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers -
Principles, Techniques and Tools. Pearson, Addison Wesley, Boston, MA, 2 edition,
2006. ISBN 0-321-48681-1.

Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software Practice & Experience, 18(9), 1988.

Peter Bumbulis and Donald D. Cowan. Re2c - a more versatile scanner generator.
ACM Lett. Program. Lang. Syst, 2:70–84, 1994.

Luca Cardelli. The computer science and engineering handbook.
http://lucacardelli.name/Papers/TypeSystems.pdf acquired on
22/03/10., 2004.

Alan Demers and James Donahue. ”type-completeness” as a language principle. In
POPL ’80: Proceedings of the 7th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 234–244, New York, NY, USA, 1980. ACM. ISBN
0-89791-011-7.

Hans Hüttel. Pilen ved træets rod. Strukturel operationel semantik af programmeringssprog.
Books on Demand, 2010. ISBN 0006794262.

Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Systems. John Wiley
& Sons, 1994. ISBN 978-0471941286.

Jens Palsberg and Michael I. Schwartzbach. Three discussions on object-oriented
typing. SIGPLAN OOPS Mess., 3(2):31–38, 1992. ISSN 1055-6400.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 2002. ISBN
0262162091.

Lutz Prechelt. Are scripting languages any good? a validation of perl, python, rexx,
and tcl against c, c++, and java. http://page.mi.fu-berlin.de/prechelt/
Biblio/jccpprt2_advances2003.pdf acquired on 25/02/10., August 2002.

Robert W. Sebesta. Concepts of Programming Languages. Pearson Education, Boston,
MA, 8 edition, 2008. ISBN 978-0-321-50968-0.

Michael Sipser. Introduction to the Theory of Computation. Thomson Course
Technology, Boston, MA, 2 edition, 2006. ISBN 978-0-619-21764-8.

139

http://lucacardelli.name/Papers/TypeSystems.pdf
http://page.mi.fu-berlin.de/prechelt/Biblio/jccpprt2_advances2003.pdf
http://page.mi.fu-berlin.de/prechelt/Biblio/jccpprt2_advances2003.pdf

BIBLIOGRAPHY Page 140 of 140.

R. D. Tennent. Principles of Programming Languages. Prentice-Hall, 1981. ISBN
0-13-709873-1.

David A Watt and Deryck F Brown. Programming Languages processors IN JAVA.
Pearson Education, 2000. ISBN 13-978-0-13-025786-4.

Haiping Zhao. Hiphop for php: Move fast.
http://developers.facebook.com/news.php?story=358&blog=1
acquired on 25/02/10., February 2010.

http://developers.facebook.com/news.php?story=358&blog=1

	Contents
	Figures
	I Introduction
	Project Description
	Problem Analysis
	Problem Statement

	Language Design
	Design Requirements
	Type System
	Informal Language Specification

	Infrastructure

	II Semantics
	Abstract Syntax for groo
	Syntactic categories in groo
	Abstract syntax

	Operational Semantics
	Environments
	Auxiliary Functions
	The numeral function
	Update Function for Environments
	Update Function for Stores
	The New Location Function
	The Apply Operator

	Transition Systems in groo

	Groo Type System
	Definition of Types
	Variable Type
	Environments
	Standard Environment

	Auxiliary Functions
	ApplyT Function
	The Set Function
	Domain of Partial Functions
	Update Function for Type Declaration Environments
	Update Function for Variable Declaration Environments
	dt from Type Declarations
	dv from Type Declarations
	dv From Variable Declarations
	Tp From Parameter Declarations
	dv From Parameter Declarations
	dv From Label Declarations
	dv From Member Declarations
	Tp From Arguments
	T From Type Annotations

	Type Judgements

	III Syntax Analysis
	Lexing
	Deterministic Finite State Automata
	What are regular expressions?

	Constructing a DFA
	Implementing a Lexer
	Minimisation of DFA's
	Principle of Minimising a DFA
	Implementing Minimise(DFA)
	Example of minimising a DFA

	Lexical Analysis Benchmark

	Parsing
	Context-Free Grammars
	LR Parsing
	LALR(1) Table Generation
	Computation of LR(0) States
	Computation of LR(1) States
	Computation of LALR(1) States
	Generating Parsing Tabels

	Resolution of Conflicts
	Error Recovery
	Efficient Push-Down Automaton Implementation
	Grammar For groo

	IV Contextual Analysis
	Contextual Analysis
	Abstract Syntax Tree (AST)
	Visitors
	Type Checker
	Type checking
	Identification Table

	V Execution
	Interpretation
	groo Recursive Interpretor (gri)

	VROOM, Virtual groo Machine
	A Virtual Machine for Groo
	Runtime Organisation in VROOM
	Registers

	gril, groo Intermediate Language
	Instruction layout
	Instruction Set

	MOM: Mark-sweep Object Manager
	Mark-Sweep Garbage Collection
	Future Optimisations

	Code Templates
	The Allocation Visitor

	VI Closing
	Discussion
	Future Work
	Conclusion

	VII Appendices
	Code Samples
	Groo Intermediate Language Example
	Bibliography

