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Abstract:

In this report we propose two improvements
to reduce the search space for state-of-the-art
optimal triangulation algorithms, with respect
to the total table size criterion.
The improvements, we propose, exploit prop-
erties of triangulated graphs and can be applied
to any triangulation algorithm, searching in the
space of all elimination orders.
This report also covers the basis for inference
in Bayesian networks and introduces the prob-
lem of triangulation. We examine heuristics,
minimal and optimal methods for solving this
problem.
Finally, we compare the methods discussed
and show that it is possible to achieve consid-
erable improvements in the efficiency of opti-
mal methods.





Preface

For readers with a basic understanding for Bayesian networks and how this relates to the prob-
lems of triangulation, chapters 6-9 will probably be most interesting, as this is where our con-
tributions and work is presented. An efficient C++ implementation of the algorithms presented
in this report should accompany this report on a CD, and is also available for download at
http://jopsen.dk/blog/2010/12/triangulation-project/ along with a digital version of this
report.

Figures and tables are enumerated in the same fashion after what number the given figure or table is
in the current chapter. e.g x.y where x is the chapter and y is the number of the figure in the chapter, so
the third figure in chapter 2 would have the number 2.3.

Definitions, theorems, corollary are enumerated after what number they are in the report as a whole,
e.g. definition 20 will also be the 20th definition in the report and corollary 2 will be the 2nd corollary
in the report.

Algorithms, or pseudo code, are enumerated like definitions. These are written in their own envi-
ronment with a headline of what algorithm it is what it is called and then the pseudo code is written on
enumerated lines.

All references to the bibliography, citation, are written in parentheses; internal references in the
report are just by number with no parentheses.

The following gives an overview of the chapters in this report.

Chapter 1 contains the project description and problem statement.
Chapter 2 contains basic theory of Bayesian networks along with the definition and idea of triangula-

tion.
Chapter 3 contains a presentation of minimal methods and their pseudo-code implementation.
Chapter 4 contains a presentation of greedy heuristic methods and their pseudo-code implementation.
Chapter 5 contains a presentation of the basic optimal methods and their pseudo-code implementation.
Chapter 6 introduces an optimization technique for optimal methods by reducing expansions using

pivot cliques.
Chapter 7 introduces an optimization technique for optimal methods by predicting coaliscing by using

transposition of perfect elemination orders.
Chapter 8 introduces an optimization technique for optimal methods by maximal prime subgraph de-

composition.
Chapter 9 introduces an optimization technique for optimal methods by reducing expansions using

graph symmetry.
Chapter 10 contains a comparison of the methods and their different optimizations.
Chapter 11 contains a discussion of the previous chapters, along with future work.
Chapter 12 contains the conclusion of the problem statement.
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Notation

Graph:
Let G = (V,E) be an undirected graph, consisting of a set of nodes V and a set of edges E. The
nodes of a graph are given by V (G) and the edges of a graph are defined by E(G).

Fill edges:
Fill edges are the edges added during a triangulation process. In the triangulation G′ = (V,E∪T ),
the fill edges T are added to the set of edges. In figures, fill edges are illustrated as dashed lines,
e.g. in figure 1 the diagonal is a fill edge.

Figure 1: The diagonal is a fill edge.

Neighbours:
nb(x,G) denotes the set of neighbours of a given node x ∈ V (G). Likewise, nb(S,G) denotes the
set of neighbours of the set S⊆ V (G).

Family:
f a(x,G) yields the family of node x ∈ V (G), which is nb(x,G)∪ x. Similarly, f a(S,G) contains
the family of all nodes in this set S, where S⊆V (G). More precisely, the family of a set of nodes
is

S
si∈S nb(si,G)∪ si.

Subgraph:
For a set of nodes W ⊆V (G), the subgraph induced by W is G[W ] = (W,E(W )), where E(W ) =
(W ×W )∩E(G).

Connected component:
A subgraph in which nodes are connected.

A

B

C

D

E F

Figure 2: The nodes {E,F,C} is a connected component
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Clique:
A clique C is a set of nodes, s.t. C ⊆ V (G) and there is an edge between each distinct pair of
nodes from C, i.e. G[C] is a complete subgraph. All maximal cliques of G are denoted by C (G).

Minimal seperator:
Given a graph G = (V,E), a subset S ⊂ V (G) is a seperator of the graph if and only if V (G)\ S
is not connected. S is an (a,b)-seperator if and only if ∃(a,b) ∈ G where the nodes a and b is
in different connected components of V (G) \ S. If there is no proper subset of S that is also an
(a,b)-seperator then S is a minimal (a,b)-seperator.(Berry et al., 2010)

Density:
The density of a graph G = (V,E) is defined as

D =
2|E(G)|

|V (G)| · (|V (G)|−1)
(1)

.

Probability of a variable For each variable, X , there is a associated probability, P(X = x), where P ∈
[0;1], denoting the probability that X will be in a certain state, x. This will be denoted as P(X).



CHAPTER 1

Introduction

Reasoning under uncertainty is a task which applies to many domains, such machine intelligence,
medicine, manufacturing, finance and agriculture. Typically, one may be interested in determining the
respective probabilities of number of outcome for a given event. The probabilities of these outcomes
typically interact with other events, as well as the introduction of evidence. Bayesian networks can
be used as tools to model this kind of relationship. With a Bayesian network it is possible to find the
conditional probability of any event occurring. This property enables inference in Bayesian networks.

In practice, inference in Bayesian networks can be accomplished by computing a joint probability
table, from which the probable states of all variables, given some evidence can be calculated. Unfor-
tunately, the size of the joint probability table grows exponentially with the number of variables in the
network. Thus, inference in Bayesian networks quickly becomes intractable.

Nevertheless, it is possible to find an elimination order of the variables in a Bayesian network that
exploits the independence between variables, to reduce the resulting total table size needed during in-
ference. A method called triangulation can be used to find good elimination orders. Triangulation is
closely related to elimination orders, since a graph has a perfect elimination order if and only if it is
triangulated.

There are many ways to triangulate a graph, but we are interested only in the one that gives the
smallest joint probability table. However, it is NP-hard to find an optimal elimination order, so it is
important to investigate the accuracy and efficiency of heuristic methods to triangulate a graph.

Problem Statement

In this project, we will investigate heuristic methods for triangulating Bayesian networks. In addition, we
will examine exact methods for finding optimal solutions, so that we may compare heuristic algorithms
to these. Furthermore, we will attempt to improve the efficiency of optimal search methods.

This will be done on the basis of the following hypothesis:
It is possible to improve the efficiency of optimal search algorithms for triangulation of Bayesian

networks.
Specifically we wish to investigate the following in this project:

• How heuristic methods for triangulation compare to each other in terms of deviation from the
optimal solution.

• How can optimal solutions be found more efficiently?

Through this investigation we will acquire knowledge about the problem of triangulation in order to
find improvements and optimizations for optimal triangulation of Bayesian networks.

1



CHAPTER 2

Bayesian Networks and the Problem of Triangulation

A Bayesian network is used as a probabilistic graphical model for simulating reasoning about problems
of uncertainty. For instance, it can be used to evaluate the risks associated with some decision or com-
paring the odds of a number of wagers. Bayesian networks are a tool for performing inference or belief
updating, which would otherwise be impractical or unfeasible to do manually.

Inference in Bayesian networks is the process of using evidence about events to determine the cer-
tainty of other events occurring. In practice Bayesian networks can be applied in various domains,
where decisions are based on a set of variables and where probabilities are needed to asses some real-
world problem; e.g. diagnosing an illness based on a number of possible symptoms, making a decision
whether or not to test for the presence of oil before drilling, deciding to test milk or produce for contam-
ination and creating artificial intelligence in computer games, etc. The rest of this chapter will contain
a brief introduction to the definitions, tools and methods forming the basis for Bayesian networks and
triangulation.

Section 2.1 covers background material from probability theory, which forms the grounding for
Bayesian networks.

Section 2.2 has a brief introduction to Bayesian networks and the components that make up a
Bayesian network, including definitions and methods for how evidence may be propagated in such a
model. Moreover section 2.2.1 deals with inference and its use in Bayesian networks and section 2.2.4
presents variable elimination.

Finally, section 2.3, is about triangulation. Specifically, the process and purpose of triangulation
with regard to inference in Bayesian networks.

Jensen and Nielsen (2007) provides a more thorough exposition on Bayesian Networks and how to
perform reasoning with them.

2.1 Tools from Probability Theory

A Bayesian network exploits formulas and definitions found in probability theory. Therefore the follow-
ing section introduces notation and definitions from this area.

The sample space of a given process, for which the outcome is uncertain, is the set of all possible
outcomes of the process if and only if the outcomes are mutually exclusive. A subset of some sample
space is called an event. In other words an event may contain different outcomes, e.g for a lottery with
numbers ranging from 1-90, the sample space, s, consists of all outcomes, which in this case is the set of
numbers s = {1,2,3, . . .88,89,90}. An outcome, o, may be any one number, e.g. o = 12 and an event,
e, could, for instance, be all numbers in the sample space greater than 88, namely e = {89,90}. So, the
set e is a subset of s, e⊂ s.

The domain of a variable X is the set of possible states: dom(X) = {x1, . . . ,xn}. We consider a set
of variables {A1, . . . ,An} over a sample space S .

To ensure consistent reasoning, for each variable A, it is required that the set of possible states
dom(A) are mutually exhaustive and mutually exclusive, i.e. there is no outcome which is not in the
sample space, a /∈ S , and there is no outcome that implies x = y and x = z for all y 6= z, respectively.

The joint probability table P(A,B) holds the probabilities for all events in A given some event in
B. It follows that the size of such a probability table is |A| · |B|, thus when the number of variables in

2
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a joint probability table grows, the size of the probability table grows exponentially. The conditional
probability table P(A|B) is the probabilities for all events in A given the occurance of some event in B.

In the following two probability tables, the probability of having a disease A given some symptom
B is used as an example. The table 2.1 lists the probability of having the disease A with or without the
presense of symptom B.

Table 2.1: Conditional Probability Table, P(A|B)
btrue b f alse

atrue 0.4 0.9
a f alse 0.6 0.1

Table 2.2 represents the probabilities of having disease A and symptom B. This table shows that the
probability of having disease A and symptom B, which is 15%.

Table 2.2: Joint Probability Table, P(A,B)
btrue b f alse

atrue 0.15 0.25
a f alse 0.45 0.15

Marginalization is the process of removing a variable from a joint probability table, e.g. to get
the probability of symptom B from table 2.2 regardless of whether or not you have disease A. To get
P(B) variable A must be marginalized out of table 2.2. This may be expressed in the following formula
P(B) = ∑A P(A,B) resulting in the following P(B) = (0.15 + 0.45,0.25 + 0.15) = (0.60,0.40). Using
marginalization of a joint probability table the probability of any variable in the joint probability table
can be found. In this case the probability of having symptom B is 60%.

Fundamental Rule

The fundamental rule is used to calculate the probability of observing two events, a and b, from the
probability of a and b given b.

P(a|b)P(b) = P(a∩b) (2.1)

The fundamental rule can be reformulated in different ways, where one leads to the next rule, namely
Bayes’ rule (Jensen and Nielsen, 2007, pg.5). Note the fundamental rule can also be generalized and
applied to probability tables of variables.

Bayes’ Rule

Bayes rule relates the probability of A given B to the probability of B given A, granted that the probability
of B is not 0. Bayes’ rule has the following form (Jensen and Nielsen, 2007).

P(A|B) =
P(A|B)P(A)

P(B)
(2.2)

Here P(A) and P(B) is the prior probability of A and B respectively. The probability P(A) is prior in
the sense that it does not take any information, about B or anything else, into account. Bayes’ rule can
be used to update probability tables and compute the probability of A given B, using statistics about the
prior probabilities of A and B, and information about the occurrence of B given A.
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The Chain Rule

The chain rule allows domains with uncertainty to be represented. This rule can be used to calculate the
probability P(Ai) or P(Ai|e) of some variable, Ai, in the universe of variables U = {A1, . . . ,An}, given
the joint probability table P (U) = P(A1, . . . ,An). The general chain rule for probability distributions is

P (U) = P(An | A1, · · · ,An−1)P(An−1 | A1, · · · ,An−2) · · ·P(A2 | A1)P(A1) (2.3)

2.2 Bayesian Networks

A Bayesian network is a type of causal network. It is a directed acyclic graph consisting of a set of
vertices representing variables and a set of edges, which are the causal relationships between these
events. The direction of the edges indicate causal impact between events. Variables represent sample
spaces consisting of, in this case, a finite set of states and each variable is always in one of its states.

A Bayesian network is:

• a set of variables, each with a finite set of mutually exclusive states,
• a set of directed edges between variables, such that the variables and edges form a directed acyclic

graph and
• a conditional probability table P(A|B1, . . . ,Bn) for each variable A with parents B1, . . . ,Bn.

An example of a Bayesian network can be seen in figure 2.1.

A1

24

3

1

5

Figure 2.1: A simple bayesian network

2.2.1 Inference in Bayesian Networks

Inference is the process of belief updating given evidence in a Bayesian network. Evidence is introduced
to a variable in a Bayesian network in order to instantiate the variable; such as setting a node to a given
state, which in turn may have an impact on the probabilities of the other variables. When evidence is
introduced it can cause a change in the probability tables of the network. These tables store the events
and variables with their respective probabilities of being in a given state. Inference in Bayesian networks
is generally NP-hard (Jensen and Nielsen, 2007, pg.45).

The table size is the product of the number of states of each variable. The total table size is just
a measure for how much memory is required in order to store the probability table while performing
inference.

There are rules for how evidence may be transmitted between variables in a Bayesian network. There
are three different types of connections with their respective rules for evidence propagation, namely
serial, diverging and converging connections. These rules are used to determine if two nodes are so-
called d-separated. d-separation is explained in the following.
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d-Separation

d-Separation reflects the relationship between two nodes and is used to encode the dependencies and
indepencies between variables in the network. When two nodes are d-separated from each other, it
means that if either node receives evidence this cannot propagate to the other node. To determine if two
nodes are d-separated the connections between them are examined; These are either serial, diverging
and converging. The opposite of d-separated is d-connected.

Definition 1 Let G = (V,E) be a directed graph, then two nodes A,B ∈V (G), A 6= B are d-separated if for all
paths between A and B there exists an intermediate variable X ∈ V (G) such that: (i) the connection is either
serial or diverging with X having recieved evidence or (ii) the connection is converging, and neither X nor any
of the descendants of X have received evidence.

In the following the three different kinds of connections are described.

Serial Connections

Two nodes have a serial connection if and only if there exists a sequence of directed edges connecting
them. In figure 2.2 A and E are in a serial connection, since there is an edge from A to B and from B to E,
but A and C are not in a serial connection because the direction of the edges connecting them changes.
In figure 2.2 evidence can only be transmitted between A and E if B is not instantiated.

Diverging Connections

In figure 2.2 B and D have a diverging connection. Evidence may be transmitted between B and D unless
the intermediate variable C is instantiated.

Converging Connections

In figure 2.2 A and C have a converging connection, evidence may be transmitted between A and C
unless the intermediate variable B or any descendant of B is instantiated.

A

B

E

C

D

Figure 2.2: Different kinds of connections in Bayesian networks.

2.2.2 The Chain Rule for Bayesian Networks

The chain rule equation for Bayesian networks is slightly different from the general chain rule given
earlier, yet it specifies the same operation. This is due to the fact that a Bayesian network specifies
a unique joint probability distribution, which is given by all conditional probability tables present in
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the Bayesian network. In addition, the chain rule for Bayesian networks demonstrates that a Bayesian
network provides a compact representation of a joint probability distribution.

In equation 2.4 the chain rule for Bayesian networks is presented. U = {A1, . . . ,An} denotes the
universe of variables in a Bayesian network and A is some variable in U. pa(A) denotes the parents of
the variable A.

P(U) = ∏
A∈U

P(A | pa(A)) (2.4)

Equation 2.5 shows the chain rule for when evidence is introduced into the Bayesian network.

P(U | e) = ∏
A∈U

P(A | pa(A))∏
i

ei (2.5)

The chain rule for Bayesian networks enables us to calculate P(A) and P(A|e) for any A ∈U, given
the joint probability table P(U) = {A1, . . . ,An}. The application of the chain rule is to marginalize
variables in U until we are left with the variable we seek, including the variables where evidence has
been introduced.

This enables us to calculate the probability of the remaining event. This is referred to as the process
of variable elimination, which strongly depends on the order for which the variables are marginalized,
namely the elimination order. Moreover, P(U) grows exponentially with the number of variables in
the Bayesian network, which underlines the importance of choosing an elimination order which gives a
small joint probability table.

2.2.3 Moral Graph

A moral graph or domain graph for a Bayesian network, can be obtained by all connecting pairs of nodes
that have a common child and removing the direction of all edges. Figure 2.3 shows a Bayesian network
and it is moral graph.

2
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1

(a) A directed graph

2

3

4

5

6

1

(b) An undirected graph

Figure 2.3: Graph (b) is the moralized undirected version of graph (a)

The new links that are added between parents are called moral links. The moral graph is also called
the domain graph for a Bayesian network and it is used for determining an elimination order. In the
following section elimination is discussed.



TRIANGULATION Page 7 of 69.

2.2.4 Elimination

An elimination order σ is a sequence (ordered tuple) of variables signifying the order in which they are
marginalized out

σ = (A1, . . . ,An),Ai ∈U (2.6)

where all variables A ∈ U must appear exactly once and the target variable appears last. Note, for n
distinct variables, there are (n− 1)(n− 2) . . .1 = (n− 1)! different elimination orders ending with a
given variable.

When calculating a potential within a Bayesian network we can use the chain rule. Instead of
computing the joint probability table for all variables (which may not even be tractable, as it grows
exponentially) we marginalize out variables during application of the chain rule until we are left with
the desired variable. This is possible because marginalization is commutative, thus the order in which
the variables in the graph are marginalized is irrelevant.

When variable A is eliminated we will be working with all the variables that are adjacent to A in the
domain graph. This means that in the graph in which A has been eliminated, all neighbours of A are
pairwise linked. If a poor elimination order is chosen the size of the intermediate joint probability table
can grow intractably large.

A
X

B

C

(a) A domain graph

A B

C

(b) Same domain graph
but with X eliminated

Figure 2.4: The same domain graph, but in (b) X has been eliminated

In figure 2.4b two new links have been added, these links are called fill-ins. In this example, when
eliminating X a new that was not present from the start is introduced. In order to avoid new domains we
seek to avoid fill-ins. The less fill-ins the better, as an elimination order with no fill-ins requires less space
(as it does not introduce new domains) than an elimination order that adds fill-ins. An elimination order
that does not introduce fill-ins is called a perfect elimination order. There can be more than one perfect
elimination order for any given graph. Finding this elimination order is closely tied to triangulation
which will be described in the following section.

2.3 Triangulation

An undirected graph is called a triangulated graph or chordal graph if it has a perfect elimination order.
For a triangulated graph it holds that every cycle consisting of at least four nodes has a chord. The
process of triangulating a graph may introduce fill-in edges, to ensure that cycles of length greater than
3 have a chord. If and only if this condition holds, the graph has a perfect elimination order.

The elimination order for the triangulation is used to create a junction tree, for the triangulated
graph. It is important to state that any triangulated graph can yield an elimination order that ends with
any variable and that if one variable has a perfect elimination order then all variables have one. So,
triangulation and finding an elimination order are intrinsically the same.
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Example of a triangulation

The figures 2.5(a) – (f) shows an example of how to triangulate a moral graph. The elimination order
(C,B,D,A) is far from minimal, there are many viable orders in this graph, but for the sake of a better
example, an order with multiple fill-ins is chosen. In figure 2.5e, eliminating the two remaining nodes is
arbitrary and can be done without introducing new fill-ins. The triangulated graph GT in figure 2.5f is
created by adding the two fill-ins found in the elimination process of the moral graph.

Triangulation of the graph in the example of figure 2.5 is not even necessary as it already has two
perfect elimination orders, namely {A,B,C,D} and {D,C,B,A}, and is therefore already a triangulated
graph.
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B

C

A

D

(a) A moral graph

B

C

A

D

(b) Deleting node C, which connects
D and B

BA

D

(c) D and B are now connected

BA

D

(d) Deleting node B, which connects
A and D

A

D

(e) A and D
are now con-
nected

B

C

A

D

(f) GT with the two fill-ins found in
the elimination

Figure 2.5: A non-minimal triangulation produced by the elimination ordering C,B,D,A
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2.3.1 Triangulated graphs

A graph G is complete if all pairs of vertices (A,B) ∈ G are pair-wise connected. The nodes V (G) of a
complete graph G is a complete set. A set of vertices U ⊆ V (G) is complete in G if G′[U ] is complete.
If U is a complete set and no other complete set B exists such that U ⊂ B, then U is a maximal complete
set also known as a clique. A clique of |V |= k nodes is a k-clique. We will usually not bother with the
distinction between complete graphs and complete sets.

B

C

A

D

Figure 2.6: A graph with the 3-clique sets {A,D,B} and {D,B,C}

In figure 2.6 there are many complete subgraphs; {A,B},{A,D,B} etc., but only two maximal com-
plete sets ({A,D,B} and {B,D,C}), as all other complete sets are subgraphs of these. Note that the graph
itself is not complete.

A node x is simplicial if and only if the node itself and its neighbors form a clique; in other words
f a(x) is a clique. The first node of an elimination order is always simplicial, therefore a triangulted
graph will always contain at least one simplicial node.

Theorem 1 A triangulated graph G = (V,E) that is not complete, with |V (G)| > 2, will always have two
non-adjacent simplicial nodes.

The following is a proof for theorem 1, it is based on a proof from (Koski and Noble, 2009, pg.128).

Proof Given a graph G = (V,E) which is not complete, and that theorem 1 is true for all graphs that
have less nodes then G. Consider two non-adjacent nodes α and β. Two subgraphs, G[A] and G[B],
are created with the minimal (a,b)-separator for α and β denoted S. G[A], is denoted as the largest
connected component of V (G)\S and G[B] = V (G)\A∪S, so α ∈ G[A] and β ∈ G[B].

By induction one of the two following cases is true: 1. G[A∪ S] is complete. 2. G[A∪ S] is not
complete and it has two non-adjacent simplicial nodes. Since G[S] is complete, at least one of the two
simplicial nodes is in the subgraph G[A], which in return means that this node is also simplicial in G;
since none of the neighbors of G[A] is in G[B]. If G[A∪ S] is complete, then any node in G[A] is a
simplicial node of G. In both cases, there exists a simplicial node of G in G[A]. This whole deduction
can similarly be used for the subgraph G[B], in other words, there is a simplicial node in G[B]. A
simplicial node in G[A] and a simplicial node in G[B] are non-adjacent, since they are separated by the
minimal (a,b)-separator S and also are not in G[S]. Which proves that if G is not complete, G have two
non-adjacent simplicial nodes.

2.3.2 Minimum, Minimal and Optimal Triangulations

In this report three different criteria which can be applied to the triangulated graphs sought after. They
are listed in the following.
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Definition 2 (Minimum triangulation) A triangulation F of a graph G = (V,E ∪T ) is minimum if and only
if 6 ∃F ′ of graph G where F ′ contains less edges than F , F ′ < F .(Berry et al., 2010)

Definition 3 (Minimal triangulation) A triangulation F of graph G = (V,E ∪T ), is minimal if and only if
6 ∃F ′ ⊂ F , such that G′ = (V,E ∪F ′) where F ′ is also a triangulation. (Berry et al., 2010)

Definition 4 (Optimal triangulation) A triangulation F of graph G = (V,E ∪ T ), is optimal if and only if
6 ∃F ′ of graph G which has a smaller table size than F

In this report we seek optimal triangulations, since it gives the best indication of the tractability of
the joint probability table. (Ottosen and Vomlel, 2010b)

Summary

A Bayesian network is a probabilistic graphical model. A Bayesian network enables inference by the
means of variable elimination, which can be done via the triangulated domain graph of the Bayesian
network and associated perfect elimination order. The task of triangulation can be approached in many
ways, however, since finding an optimal triangulation is NP-hard, the triangulation step is a major tech-
nical barrier for more widespread adoption of Bayesian networks, even though the basics are well un-
derstood.

It is still an open problem to find and optimize triangulation methods and algorithms that solve
the problem more efficiently. Hence, a number of different triangulation algorithms exist each with its
respective optimality criterion, e.g. minimal triangulation methods seek to find an elimination order
that introduces the least fill-ins, whereas optimal triangulation focuses on creating the smallest joint
probability table of the network. So, to improve triangulation, given that a number of methods already
exist, the goal will most likely be to find more precise heuristic methods and more efficient optimal
methods; which will in return mean Bayesian networks can be adopted easier. The motivation behind
the search for better triangulation methods is to make Bayesian networks adoptable in more fields by
allowing a lot more complex domains to be modelled. The methods and algorithms which already
exist for triangulation will be discussed in further detail starting with minimal methods in chapter 3,
continuing with greedy heuristic methods in chapter 4 and then optimal methods in chapter 5.



CHAPTER 3

Minimal Methods

The purpose of this chapter is to present methods for finding the minimal triangulations of a graph. Also,
a method called recursive thinning which removes redundant fill-ins from non-minimal triangulated
graphs is discussed.

A minimal triangulation has the property, by definition 3, that there exists no proper subset of the
fill-in edges for which the graph still is triangulated. I.e. the graph is no longer triangulated if a fill-in
edge were to be removed. The total table size obtained by a minimal method will, in general, not fare
well against optimal methods, nor greedy heuristics for that matter. In return minimal methods are fast
and can be applied to other problems, such as graph decomposition.

3.1 LB-Triang

The following algorithm, developed by (Berry, 1999), focuses on not requiring a precomputed minimal
ordering of the nodes of a given graph, like previous traditional efficient algorithms have relied on.

Algorithm 1 LB-Triang
Input: A graph G = (V,E), an ordering α on V (G).
Output: A minimal triangulation H = (V (G),E(G)∪F) of G.

1: H = G
2: F = /0

3: for all vertices x in V (G) taken in order α do
4: for all connected components C 6∈ nb(x,H) do
5: Make nb(C,G) into a clique by adding fill-in set F ′

6: F = F ∪F ′

7: H = (V (G),E(G)∪F)
8: end for
9: end for

The LB-Triang algorithm, shown in algorithm 1, triangulates a given graph G = (V,E) from an
ordering α of the nodes in the graph. The algorithm starts by looking at the first node x in the ordering,
for which it finds the neighbors nb(x,H) in the updated graph H, which contains the fill-ins as well as
the original graph G. The algorithm then creates a set of all nodes that are not in the family of the current
node x. Then we find subsets (connected components) C 6∈ nb(x,H) in which nodes are connected in
this set. For all the connected components it adds fill-ins between the components’s neighboring nodes
that are in the family of x in the original graph (nb(C,G)), making them into a clique. We then continue
to the next node in the ordering, this goes on for all nodes in the ordering. Depending on the structure of
the graph, the most fill edges are created at the first or second node. The algorithm does not halt when
the graph is triangulated, it continues until all nodes have been iterated over; which is time-consuming
and inefficient.

In figure 3.1 node A is chosen for the first iteration, hence the ordering α starts with A, connected non-
neighbors of A, the connected components C 6∈ nb(A,H) is found to be {{E,C}}. E and C’s neighbors in
the family of A is {D,B} and therefore fill-in {D,B} is added. For the second iteration B is investigated;
connected non-neighbors of B, C 6∈ nb(B,H) is found to be {{E}} and E’s neighbors within the family of

12
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A

B

C

D

E

Figure 3.1: A minimal triangulation produced by the LB-Triang algorithm, where α = {A,B,C,D,E}

B is {D,C} and therefore fill-in {D,C} is added. The algorithm keeps iterating over the rest of the nodes,
but no further fill-ins will be added for any of them, and the graph now has a minimal triangulation.

3.2 Maximal Cardinality Search (MCS-M)

The MCS algorithm is based on a result that for recognizing chordality of a graph when performing a
lexicographic breadth-first search (Lex-BFS) it is sufficient to simply maintain and compare the number
of processed neighbours for each node, rather than maintaining a list of processed neighbours for each
node. Hence, the name maximum cardinality search (MCS). MCS-M, which was developed by Berry
et al. (2004), is an extension of MCS in the sense that so-called fill paths are also considered. In addition,
MCS-M guarantees minimal triangulations, whereas MCS does not.

This method produces a minimal triangulation by generating an ordering α of the nodes in the graph
and the set of fill-ins F , such that G has a perfect elimination ordering. The ordering α is essentially a
reversed elimination order.

Integer weights are maintained for each node in the graph. A weight is the cardinality of the already
processed neighbours of a node. In other words, the node which is adjacent or for which there is a path
to the highest number of numbered nodes is selected in each iteration. The algorithm is described in 2.

The algorithm iterates over all n vertices in G. The first node is choosen arbitrarily, since each
node has its initial weight w(v) = 0. At each step i a node v is assigned a number and the weight of
all unnumbered nodes u1, · · · ,uk for which there exists a path  between u and v such that ∀xi ∈ :
@α(xi)∧w(xi) < w(u) for 1≤ i≤ k (i.e. each node is unnumbered and has weight which is strictly less
than w(u) and w(v), of course, since v was the node with greatest inital weight) are added to a set S,
which is the set of nodes on the fill path of v.

Subsequently all nodes s ∈ S receive the weight w(s) = w(s)+1 and if (s,v) /∈ E then F = F ∪ (s,v).
Before next iteration v is assigned a number α(v) = i. Once all nodes have been processed a reversed
minimal elimination ordering a and the set of fill-ins F have been produced. (Berry et al., 2004)

An example of the algorithm running on a graph is shown in figure 3.2.
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Algorithm 2 MCS-M
Input: A Graph G = (V,E).
Output: A minimal elimination ordering α of G and the corresponding triangulated graph H = G+

α .
1: F = /0

2: R = V (G) . R is the set of unnumbered nodes.
3: for all nodes v ∈ V (G) do
4: w(v) = 0
5: for i = n downto 1 do
6: Choose an unumbered node v s.t. argmax

v∈R
w(v)

7: S = /0

8: for all unnumbered nodes u ∈ V (G) do
9: if ∃uv ∈ E(G) or a path u,x1,x2, · · · ,xk,v in G through unnumbered nodes s.t. w(xi) <

w(u) for 1≤ i≤ k then
10: S = S∪{u}
11: end if
12: end for
13: for all nodes u ∈ S do
14: w(u) = w(u)+1
15: if uv 6∈ E(G) then
16: F = F ∪{uv}
17: end if
18: end for
19: end for
20: R = R\{v}
21: end for
22: return H = (V (G),E(G)∪F)
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(a) The initial graph. All weights are
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(b) v = A. A is numbered and the
weights w(B) and w(C) are incre-
mented.
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(c) v = B. A fill path through (B→
D→E→C) is found. w(D) and w(C)
are incremented.ED
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(e) v = D. w(E) is updated.
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(f) v = E. E just receives a number
and the algorithm terminates.

Figure 3.2: The MCS-M algorithm run on the example graph. Numbers in parentheses denote w(u).
Dark grey represents a numbered node, with corresponding number written below, and light grey points
out that the weight for a given node is incremented. This example produces the minimal eliminaton
ordering α = (E,D,C,B,A). (pg.292 Berry et al., 2004, fig.5)
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3.3 Recursive Thinning

After finding an elimination ordering, one might find that there is a subset T ′ ⊂ T , such that T is the
corresponding triangulation of a graph G, and T ′ is also a triangulation of G. Where the total table size
of T ′ is no worse than T , and often significantly better than T .

In order to develop and design an algorithm that removes redundant fill-ins, and thereby making it
minimal, the following Theorem is proposed by Kjaerulff (1990).

Theorem 2 Let G = (V,E) be a graph and G′ = (V,E ∪T ) be triangulated. Then T is minimal if and only if
each edge in T is a unique chord of a 4-cycle in G′.

An equivalent proposal of theorem 2 is provided by the following corollary.

Corollary 1 Let G = (V,E) be a graph and G′ = (V,E ∪T ) be triangulated. Then T is minimal if and only if
for each edge {v,w}∈ T there is a pair of distinct vertices {x,y}⊆ nb(v,G′)∩nb(w,G′) such that {x,y} 6∈E∪T .

Figure 3.3 illustrates the properties of corollary 1; the graph has a minimal triangulation, because
for the fill {A,C} ∈ T there is no pair of adjacent nodes that are common neighbours of A and C.

E

D

A

BC

Figure 3.3: A minimal triangulation produced by the elimination order starting with B

A redundant fill-in, e = {v,w} can only be a subset of a single clique C, as a fill-in which is a subset
of more than one clique infers that the graph is not triangulated, which contradicts the redundancy of e.
When the reduntant fill-in e is removed, C splits into two new cliques; C1 = C \{v} and C2 = C \{w},
which weights sum is typically less than the weight of C and never worse than that.

A triangulation T may become minimal by dropping the redundant fill-ins that fulfil the conditions
of corollary 1. However, it is important to run sweeps through the graph more than once, and therefore
the algorithm is made recursive. The following example illustrates why it is important to run through
the graph at least more than once. In figure 3.4 the fill-in {B,D} cannot be removed, as it has a pair
of non-adjacent neighbours ({A,C}). The fill-in {A,D} can however be removed as they only have one
common neighbour, i.e., B. After {A,D} has been deemed redundant and removed from T , {B,D} can
be removed as it no longer has a pair of non-adjacent neighbours.

The following algorithm proposed by Kjaerulff (1990) is based on the previous discussion.
The algorithm works by finding fill-ins without common neighbours that are non-adjacent, removing

it from the set of fill-ins T as well as the original triangulated graph G and recursivly running the
algorithm again with the new input to remove new candidates.
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B
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A

D

Figure 3.4: A non-minimal triangulation produced by the elimination order C,B,D,A

Algorithm 3 Recursive Thinning
1: function THIN(T,G = (V,E ∪T ),R) (initially R = T ))
2: R′ = {e1 ∈ T |∃e2 ∈ R : e1∩ e2 6= /0}
3: T ′ = {{v,w} ∈ R′|G(nb(v,G)∩ nb(w,G)) is complete}
4: if T ′ 6= /0 then
5: return Thin(T \T ′,G = (V,E ∪T \T ′),T ′)
6: else
7: return T
8: end if
9: end function

Summary

Minimal methods have fast execution time. They provide a quick way of obtaining a minimal trian-
gulations, but do not guarentee triangulations of optimal table size. This goes to show that minimal
triangulations in general do not lend themselves to triangulation with total table size as the optimality
criterion, as shown in chapter 10. Nevertheless, minimal triangulations are useful for the task of finding
decompositions of a graph.

In the following chapter other strategies for computing triangulations, namely greedy heuristic meth-
ods, are discussed.



CHAPTER 4

Greedy Heuristic Methods

This chapter covers greedy heuristic methods for producing triangulated graphs. The reason why greedy
heurstic methods can be employed for the task of triangulation, is that some of them may yield relatively
good approximations to an optimal solution in a fraction of the time required by optimal search methods.

However, since these methods rely on a local greedy search, mistakes may accumulate throughout
execution, leading to a less than optimal elimination order. Moreover, each heuristic works better on
some graphs rather than others. Nevertheless, using heuristic methods to compute an initial upper bound
for optimal search methods provides the opportunity to discard non-optimal branches by the means of
upper bound pruning right from the beginning.

The greedy methods described in this chapter generally follow the same pattern and can therefore be
integrated into one algorithm. The heuristics only differ in the way the cost is computed, as well as the
function each specific method seeks to minimize.

4.1 Generic Greedy Algorithm

The heuristics discussed in the following seek to produce a minimal triangulation based on some local
optimization criterion. Algorithm 4 shows the generic greedy algorithm. The subscript X denotes the
name of the applied optimization criterion. For instance, GreedyMinFill indicates that ComputeCost uses
the minimum number of fill-ins introduced after eliminating a node to choose the best candidate for the
elimination order.

The depth parameter in the signature of algorithm 4 indicates the look-ahead depth which should be
applied to a given heuristic. The role of this is to have the ability to configure the heuristic algorithms
to search deeper into the problem graph and potentially choose better elimimation orders based on more
informed paths found from the look-ahead searches.

Algorithm 4 Greedy
1: function GREEDYX (G,depth)
2: F = /0

3: R = V (G) . R is the set of non-eliminated nodes.
4: while R 6= /0 do
5: minCost = ∞

6: best =⊥
7: for each node v ∈ R do
8: costv = COMPUTECOSTX (G,R,v,depth)
9: if costv < minCost then

10: minCost = costv
11: best = v
12: end if
13: end for
14: F = F∪ ELIMINATENODE(v,R) . Note: sets R = R\{v}.
15: end while
16: return T = (V (G),E(G)∪F)
17: end function

18
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4.1.1 Min-fill

The first cost function covered is minimum fill (min-fill). Min-fill is a heuristic strategy which produces
a triangulated graph by successively eliminating nodes which lead to the fewest fill-ins. Specifically,
each node vi in the elimination order σ = (v1,v2,v3, · · · ,vn) is greedily chosen such that the number of
fill edges |Fi| indtroduced at each step by eliminating vi is the smallest. The minimum fill of a graph
G = (V,E) is |E(G)−E(GT )| over all triangulations GT of G. (Ottosen and Vomlel, 2010b) Since this
method makes use of a local greedy heuristic estimate, it is not guarenteed to find the minimum number
of fill-ins whose inclusion renders the graph triangulated. The general problem of finding the minimum
number of fill-ins required in order to make a graph triangulated is NP-complete, which was shown by
(Yannakakis, 1981) by reduction from the optimal linear arrangement problem.

The ComputeCost function for min-fill is shown in algorithm 5.
For each node u ∈ V (G) the algorithm iterates the neighbour set nb(u,G), and greedily selects a

node v ∈ nb(u,G) which introduces fewest fill-ins to the triangulated graph GT = (V (G),E(G)∪F)
after elimination. By augmenting the algorithm with k look-ahead steps it is possible to consider a path
of nodes.

Algorithm 5 Min-fill
1: function COMPUTECOSTMinFill(G,R,n,depth) . R is the set of remaining nodes
2: cost = COUNTFILLINS(G,n,R) . Finds the number of fill-ins introduced by eliminating n
3: R′ = R\{n}
4: if depth > 1 and R′ 6= /0 then
5: minCost = ∞

6: for each node v ∈ R′ do
7: costv = COMPUTECOSTMinFill(G,R′,v,depth−1)
8: if costv < minCost then
9: minCost = costv

10: end if
11: end for
12: cost = cost +minCost
13: end if
14: return cost
15: end function

4.1.2 Min-width

The minimum width (min-width) criterion requires the triangulated graph to have minimum treewidth,
which is the size of the largest clique minus one. The algorithm checks the degree δ(v) of each node
v ∈ V (G) and the node with the lesser degree is removed first. The degree of a node is the number
incident edges to the node. (Ottosen and Vomlel, 2010b)

The cost function for min-width is shown in algorithm 6.
The algorithm goes through all n vertices in V (G) determining their degree. While there are still

remaining nodes, each remaining node is examined and the one with the least degree is eliminated. After
a node is eliminated the degree d(u) of each u ∈ nb(n,G) is recomputed. (Ottosen and Vomlel, 2010b)
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Algorithm 6 Min-width
1: function COMPUTECOSTMinWidth(G,R,n,depth) . R is the set of remaining nodes
2: cost =| nb(n,G)∩R | . Cost is the width of the potential clique.
3: ... . Identical to algorithm 5 lines 3-13.
4: return cost
5: end function

4.1.3 Min-weight

The minimum weight (min-weight) criterion states that a triangulated graph must have minimum table
size. Each node v ∈V (G) has a weight w(v) associated to it, which corresponds to the number of states
sp(X) of the respective variable X in a Bayesian network. (Ottosen and Vomlel, 2010b)

Min-weight is shown in algorithm 7. The min-weight heuristic minimizes the function f (Cu) =
w(Cu), where Cu is the family of each node u ∈ V (G) and w(Cu) is the weight of the node u. The
algorithm iterates through all nodes u ∈ V (G) and calculates the weight of the family f a(u) of each u,
which is the table size. Essentially, this algorithm minimizes the weight of the cliques that are being
created by calculating their weight using w(Cu) = ∏ j∈Cu c( j).

Algorithm 7 Min-weight
1: function COMPUTECOSTMinWeight(G,R,n,depth) . R is the set of remaining nodes
2: clique = {nb(n,G)∩R}\{n}
3: cost = TABLESIZE(clique) . The table size of the potential clique introduced.
4: ... . Identical to algorithm 5 lines 3-13.
5: return cost
6: end function

Summary

As mentioned earlier the heuristics described above may produce good or bad triangulations depending
on the graph. Therefore it makes sense to compare their accuracy on the same set of graphs. Benchmarks
have been performed and results are discussed in chapter 10.

Greedy heuristic methods are fast, but are not guaranteed to always lead to the best solution, since
their search space is much smaller than the space searched by optimal methods. This may be a problem if
the elimination order for some Bayesian network produced from e.g. min-fill turns out to be intractable,
which is not unthinkable. (Ottosen and Vomlel, 2010b)

In the next chapter optimal search methods are covered. These methods are guaranteed to find an
elimination order which yields the optimal table size, however this comes at the cost of exponential
asymptotic complexity, due to the NP-hardness of finding a elimination order of minimum total table
size. Because of the inherent difficulty of exponential complexity, it is important to explore methods
that reduce the runtime and/or memory requirements by getting rid of non-optimal branches.



CHAPTER 5

Searching for Optimal Solutions

This chapter presents methods for finding the optimal triangulation of a graph, where the optimality
criterion is the total table size.

5.1 Optimal Search Algorithms

In this chapter we consider two different algorithms for computing optimal elimination orders, namely
depth-first search and best-first search. These algorithms find an optimal triangulation by searching
the space of all elimination orders. What sets these two algorithms apart is the strategy by which this
search space is explored. Moreover, either method has its pros and cons with respect to space and time
complexity. Still, both methods have the property that they permit certain enhancements, such as upper
bound pruning and coalescing, which enable us to increase their efficiency.

Definition 5 A partially triangulated graph GT of a graph G = (V,E) is a subgraph G[T ] with a perfect elim-
ination order, where T = V (G) \R and R 6= /0. We say T is the set of eliminated nodes and R is the set of
remaining nodes in G. Also, T ∪R = V (G) and T ∩R = /0.

When running either of these search algorithms, an initial upper bound or seed value is computed
with a heuristic method, such as min-fill. This upper bound is used to reduce the search space. Since the
optimality criterion is total table size, the upper bound is simply instantiated with the total table size of
the solution found with the heuristic method.
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Figure 5.1: The search tree for all elimi-
nation orders of a graph with 3 nodes.

Furthermore, in Ottosen and Vomlel (2010a) a lower
bound on the total table size is also computed using the max-
imal cliques of a partially triangulated graph. Note, finding
the maximal cliques of a graph is NP-complete. So, in order
to avoid constructing the maximal cliques and computing
the total table size of every elimination order, an approxi-
mated table size of a partial elimination order is computed.
This approximation is used to avoid expansion of some elim-
ination orders, i.e. an elimination orders with approximated
total table size larger than the upper bound. Note, the ap-
proximation must be a lower bound for this work.

Now, the closer to the optimal solution this initial up-
per bound is, the more the efficiency of the algorithm is in-
creased, since more unpromising branches will be pruned
with a tighter bound. Again, since we consider optimal
search algorithms and ensured that the approximated total
table size is a lower bound, the resulting elimination order
will never be worse (in terms of total table size) than the
elimination order found initially by the heuristic value.

In figure 5.1 the tree illustrates the space of all elimination orders of any graph with 3 nodes a,b,c.
Each node in represents a computation step and a distinct partial elimination order. Notice, that if a lower
bound on the total table size of step (a), where node a has been eliminated, is larger than the total table
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size of some complete elimination order, there is no need to explore the successor steps, (a,b), (a,c)
and their respective successor steps, (a,b,c) and (a,c,b). Basically, successor branches are discarded.

Additional reduction of the search space is possible by the means of coalescing. This method is
possible due the result, known as the Invariance theorem (theorem 3). It basically states that the resulting
subgraph G[V \Y ] induced by applying any elimination order containing the same subset Y is exactly
the same, no matter what order each node in Y is eliminated.

The Invariance theorem and proof given in Darwiche (2009)[p.236] are reproduced in the following.

Theorem 3 (Invariance Theorem) If σ1 and σ2 are two partial elimination orders containing the same set of
nodes Y ⊂ V (G), then applying these will lead to the identical subgraphs, Gσ1 and Gσ2 .

Proof We need to show that two nodes a and b of V (G)\Y , which are non-adjacent in the initial graph
G, are adjacent in graph Gσ1 if and only if there exists a path a,x1, . . . ,xm,b which connects a and b
in graph G, and ∀xi : xi ∈ σ1. In other words, the set of edges introduced between nodes in Gσ1 by
eliminating up to σ1 are the same, regardless of the order each xi ∈ σ1 is eliminated. This ensures that
Gσ1 and Gσ2 are the exact same subgraphs.

Let G = G1, . . . ,Gn = Gσ1 be the sequence of graph transformations generated by eliminating up
to σ1 in G. Suppose there is a path ρ = (a,x1, . . . ,xm,b) connecting nodes a and b in the graph G1 in
the sequence. Let Gi be the last graph in the sequence of transformations which preserves the path ρ.
Graph Gi+1 is induced by eliminating some node x j from the path ρ. Eliminating x j introduces an edge
between the two nodes x j−1 and x j+1 on the path ρ, if there is not already an edge. Consequently, Gi+1
still maintains a path ρ′ connecting a and b, where all internal nodes are in σ1. Therefore, nodes a and b
stay connected by a path ρ′ after elimination of x j. Also, a and b are adjacent in graph Gσ1 .

We now assume that nodes a and b are adjacent in graph Gσ1 , but non-adjacent in G. Let Gi be the
first graph in the sequence in which a and b are adjacent. Graph Gi is the result of eliminating some
variable x j where {a,b} ⊆ nb(x j) in graph Gi−1. This implies that nodes a and b are connected by a path
ρ where each internal node xi is in σ1.

By repeated argument on the edges (a,x j) and (b,x j), it follows that a and b must be connected by
a path ρ where each internal node is in σ1. �

This result shows that the search space of all possible elimination orders contains many replicated
parts. This knowledge can be applied to optimal search algorithms with the benefit of avoiding having
to solve identical subgraphs in the search tree. In practice it requires that an algorithm keeps track of the
subgraphs seen so far, so it is possible to look them up and perform coalescing. (Darwiche, 2009)

5.2 Clique Maintenance

In Ottosen and Vomlel (2010a) the problem of finding all of maximal cliques is reduced by computing
the maximal cliques of G2 using the maximal cliques of G1, where the only difference between G1 and
G2 is a set of edges. Typically, these are the fill-ins introduced when eliminating a node in a step from
the partially triangulated graph G1 to G2.

5.2.1 Finding Maximal Cliques

The Bron-Kerbosch algorithm can be used to find the maximal cliques of a graph. It operates with three
disjoint sets R, P and X . The set P are the prospective nodes; nodes that may be used in a maximal
clique. The set X is the excluded nodes; nodes that may not be used in a maximal clique, this set is used
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to avoid reporting the same maximal cliques more than once. The set R is the nodes that are currently in
the clique.

The algorithm works by recursively calling itself, with R∪ {v} as R, P∩ nb(v,G) as P and X ∩
nb(v,G) as X , for all v ∈ P. During execution the set R, which is the current clique being grown, is
expanded by one node (v is added), while P is reduced to only the neighbours of v that were previous
prospective nodes. All nodes in R are connected to all nodes in R∪P, and when P = /0, R is a maximal
clique, and if X = /0 the maximal clique R will not have been reported before.

Bron-Kerbosch with pivot, see algorithm 8, only performs the recursive call for all prospective nodes
v ∈ P\nb(v,G) that are not neighbours of some pivot node p. The Bron-Kerbosch algorithm, with and
without pivot, is presented detailed in (Bron and Kerbosch, 1973) where Bron-Kerbosch with pivot
selection is refered to as ”Version 2”. Different pivot selection strategies are discussed in Cazals and
Karande (2008), however, we just choose the first node in P∪X , as it is done in Ottosen and Vomlel
(2010a).

The maximal cliques of a graph G = (V,E) can be found by initially invoking the Bron-Kerbosch
algorithm (See algorithm 8) as such BRONKERBOSCH(G, /0,V, /0). It is also possible to find the maximal
cliques in a subgraph G[S] induced by the nodes S ⊆ V by calling the algorithm with the arguments
BRONKERBOSCH(G, /0,S, /0).

Algorithm 8 Bron-Kerbosch with pivot
1: function BRONKERBOSCH(G, R, P, X)
2: if P = /0 and X = /0 then
3: return {R} . Report R as maximal clique.
4: else
5: C = /0

6: p = n, where n ∈ P∪X . Pivot selection.
7: for all v ∈ P\nb(p,G) do
8: P = P\{v}
9: C = C ∪BRONKERBOSCH(G,R∪{v},P∩nb(v,G),X ∩nb(v,G))

10: X = X ∪{v}
11: end for
12: return C
13: end if
14: end function

When implementing algorithm 8 it is worth noting that each maximal clique will only be report-
ed/returned once on line 3. Thus, the union operation in line 9 will only operate on disjoint sets. In a
practical implementation this means that a reference to an array could be given as parameter and R could
be added to this array on line 3. As a result, avoiding a potentially expensive union operation, reducing
the number of dynamic memory allocations.

5.2.2 Finding New Maximal Cliques After Adding/Removing Edges

In Ottosen and Vomlel (2010a) the new maximal cliques in G′ = (V,E ∪F) after adding (or remov-
ing) a set of edges F to G = (V,E) are computed by calling Bron-Kerbosch like this BRONKER-
BOSCH(G′, /0, f a(I,G′), /0) and consider the reported cliques that intersect I, where I = {v,u | {u,v} ∈ F}
is the set of nodes to which a new edges in F is attached. This is possible because new cliques must
appear in the family of I, and all maximal cliques in G[ f a(I,G′)] that intersect with I are also maximal
cliques in G′. And as mentioned in the section about Bron-Kerbosch it can also be used to find maximal
cliques in a subgraph, such as G[ f a(I,G′)].
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In algorithm 9, this approach has been taken a little further by including the intersection test with
I into the Bron-Kerbosch algorithm. This allows us to prune further in line 6, as suggested in Ottosen
and Vomlel (2010a), and only report maximal cliques in G′ on line 4. In a practical implementation this
means that we will never allocate memory for cliques that are not maximal in G′. And we maintain the
good implementation properties from the Bron-Kerbosch, i.e. that the union operation in line 11 only
operates on disjoint sets.

Algorithm 9 Algorithm finding new maximal cliques after adding/removing edges
1: function FINDNEWCLIQUES(G, R, P, X, I)
2: if P = /0 and X = /0 then
3: if R∩ I 6= /0 then
4: return {R} . Report R as a new maximal clique.
5: end if
6: else if R∩ I 6= /0 or P∩ I 6= /0 then . Extra pruning.
7: C = /0

8: p = n, where n ∈ P∪X
9: for all v ∈ P\nb(p,G) do

10: P = P\{v}
11: C = C ∪FINDNEWCLIQUES(G,R∪{v},P∩nb(v,G),X ∩nb(v,G), I)
12: X = X ∪{v}
13: end for
14: return C
15: end if
16: return /0

17: end function

To find the new maximal cliques that appear in G′ = (V,E ∪F) after adding edges F to G = (V,E)
FINDNEWCLIQUES(G′, /0, f a(I,G′), /0, I) is called, where I = {u,v | {u,v} ∈ F}. This will yield the
maximal cliques that intersect I, which includes all the new maximal cliques. To update the old maximal
clique set C (G) to find the maximal cliques of G′ all cliques that intersect I are removed and the maximal
cliques found by calling FINDNEWCLIQUES(G′, /0, f a(I,G′), /0, I) are added.

5.2.3 Incremental Update

Algorithm 10 computes the maximal clique set C′ of a graph G′ = (V,E ∪F) using a graph G = (V,E)
and the maximal clique set C of this graph. This is done by removing cliques that intersect with some
node for which a new edge has been added. Subsequently, the set of maximal cliques that appear around
the edges to which a new edge have been added are computed, using algorithm 9. Notice that in practical
implementation it is often useful to also maintain total table size while adding/removing cliques.

Algorithm 10 Algorithm updating the cliques set when adding edges
1: function UPDATECLIQUES(G, G’, C)
2: F = E(G′)\E(G)
3: I = {v,u | {u,v} ∈ F}
4: C′ = {X ∈C | X ∩ I = /0}
5: C′ = C′ ∪FINDNEWCLIQUES(G′, /0, f a(I,G′), , I)
6: return C′

7: end function
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5.3 Best First Search for Optimal Triangulations

Best-first search (BFS) is an optimal search algorithm, which finds the solution by expanding the most
promising nodes first, given some rule for prioritizing these nodes. In contrast to the breadth-first search
algorithm, which continuously expands all nodes in the order by which they were enqueued, chooses to
expand the most promising successor.

For this reason, BFS requires to maintain a frontier of promising expanding nodes in memory. So,
to adapt this algorithm to the searching problem of finding optimal elimination orders, a structure called
step is used. In most litterature this is known as a node, but for disambiguation, we will refer to these as
steps and solely be referring to a vertex, representing a variable in a Bayesian network, as a node.

Each step represents a partial elimination order by storing information about the configuration of the
graph, remaining nodes and maximal cliques. In pseudocode these attributes are accessed by: s.G, s.R,
s.C, s.tts; where s.G is the current graph configuration, s.R is the remaining missing nodes, s.C are the
cliques of the graph used in clique maintenance and finally s.tts is the current table size.

The BFS algorithm included in this report is the algorithm developed by Ottosen and Vomlel
(2010b). Likewise, our implementation makes use of hash map for coalescing. As mentioned ear-
lier, this coalescing map is used to prune unnecessary expansion of steps leading to the same resulting
subgraph, yet with table size worse than the current upper bound. Again, the benefit of this is increased
efficiency, by avoiding computation of the same subproblems in the search graph.

Pseudocode for BFS is shown in algorithm 11. Here, an start step is created, with the initial graph,
the remaining nodes, which at this point are all nodes of the graph, except already simplicial nodes. BFS
uses the greedy minimum fill algorithm to compute an initial upper bound and then find the cliques. The
cliques, can then be used to determine the initial table size of the graph. This initial table size is also a
measure of the best solution found so far.

The step is then added to a priority queue. While this queue is non-empty, a step is dequeued and
expanded. Expanding a step corresponds to generating successor steps for all the remaining nodes not
in the partial elimination order of the parent step. New fill-ins are introduced and the set of remaining
nodes is recomputed after elimination of a node, as well as any simplicial nodes. Table size and the
affected maximal cliques are recomputed.

To sum up: A branch is abandoned if the table size of the current successor step is larger than the
current best. If there are no more nodes remaining in the step, this means a solution or goal step has
been found. Finally, a branch is abandoned if it coalesces with a better partial elimination order in the
hash map.

After pruning the coalescing map is updated. All steps that have the same set of remaining nodes as
the step currently being expanded are removed from the queue. At the end of each iteration the successor
step is enqueued with its associated table size for prioritization.

5.4 Depth-First Search

Depth-first search (DFS) can also be used to find elimination orders with optimal total table size. DFS
is a simple uninformed search method, which expands a path as deep as possible, by always expanding
the first child step encountered, backtracking if a goal step or a leaf step is found. In other words, steps
are expanded in a last-in-first-out manner.

DFS is advantageous in terms of memory requirements, since it does not maintain a frontier of
nodes, unlike BFS. The search space of all elimination orders forms a tree structure of size O(n!), where
n = |V (G)|. Exploring this tree in a depth-first manner requires O(n) space and in general Θ(n!) time,
since deeper steps are expanded first and the height of the tree is at most n.
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The running time with coalescing is O(n!) rather than Θ(n!) without this enhancement. However,
coalescing requires O(2n) space, but with much smaller hidden constants than with best-first search.

Algorithm 12 lists pseudocode for DFS as presented by Ottosen and Vomlel (2010b). The code is
similar to that of best-first search, shown in listing 11. One thing that is immediately apparent is the lack
of a priority queue, where instead EXPANDSTEP calls itself recursively until it encounters a step that
can be pruned or a goal step in line 21. If this goal step is better than a solution found so far, the best
solution is updated.

Three global variables are used, namely bestT , which stores the best triangulation found so far and
besttts is its associated total table size, and lastly there is map, which is the coalescing map initialized in
line 10. In line 12 the best solution is returned.

(Darwiche, 2009; Ottosen and Vomlel, 2010b)

Summary

In this chapter we have introduced the searching problem of computing an elimination order of optimal
table size. We have discussed optimal search algoritms and how they can be adapted to search for optimal
triangulations. Later in this report we will see that the efficiency of both algorithms be improved further,
by exploiting certain properties of elimination orders and triangulated graphs.
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Algorithm 11 Best First Search
1: function BESTFIRSTSEARCH(G)
2: s =CREATESTEP() . Create an empty step structure.
3: s.G = G
4: s.R = V (G)\FINDSIMPLICIALS(G)
5: s.C =BRONKERBOSCH(G, /0,V (G), /0)
6: s.tts =TABLESIZE(s.C)
7: map =CREATEHASHMAP() . Initialize an empty hash-map
8: Gmin f ill =GREEDYMinFill(G,1)
9: Cmin f ill =BRONKERBOSCH(Gmin f ill, /0,V (G), /0)

10: besttts = TABLESIZE(Cmin f ill) . Use minfill as upperbound.
11: ENQUEUE(Q,s) . Q is priority queue of open steps
12: while Q 6= /0 do
13: n =DEQUEUE(Q)
14: if n.R = /0 then
15: return n.G
16: end if
17: for all v ∈ n.R do
18: m =CREATESTEP()
19: m.G =INTRODUCEFILLINS(n.G,n.R,v)
20: m.R = n.R\FINDSIMPLICIALS(m.G[n.R])
21: m.C =UPDATECLIQUES(n.G,m.G,n.C)
22: m.tts =TABLESIZE(m.C)
23: if m.tts≥ besttts then . Upperbound pruning
24: continue
25: else if m.R = /0 then
26: besttts = m.tts . Update upperbound
27: end if
28: if map(m.R)≤ m.tts then . Prune using hash-map
29: continue
30: end if
31: map(m.R) = m.tts
32: REMOVEFROMQUEUE(Q, m.R) . Remove step q ∈ Q where q.R = m.R
33: ENQUEUE(Q,m)
34: end for
35: end while
36: end function
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Algorithm 12 Depth-First Search
1: function DFS(G)
2: s =CREATESTEP() . Create an empty step structure.
3: s.G = G
4: s.R = V (G)\FINDSIMPLICIALS(G)
5: s.C =BRONKERBOSCH(G, /0,V (G), /0)
6: s.tts =TABLESIZE(s.C)
7: bestT =GREEDYMinFill(G,1) . bestT is a global variable.
8: Cmin f ill =BRONKERBOSCH(bestT , /0,V (G), /0)
9: besttts = TABLESIZE(Cmin f ill) . besttts is a global variable.

10: map = CREATEHASHMAP() . Create global hash-map.
11: EXPANDSTEP(s)
12: return bestT
13: end function
14: function EXPANDSTEP(n)
15: for v ∈ n.R do
16: m = CREATESTEP()
17: m.G = INTRODUCEFILLINS(n.G,n.R,v)
18: m.R = n.R\ FINDSIMPLICIALS(m.G[n.R])
19: m.C = UPDATECLIQUES(n.G,m.G,n.C)
20: m.tts = TABLESIZE(m.C)
21: if m.R = /0 then
22: if m.tts < besttts then . Update upper bound.
23: besttts = m.tts
24: bestT = m.G
25: end if
26: else
27: if m.tts≥ besttts then
28: continue
29: end if
30: if map(m.R)≤ m.tts then . Prune using hash-map.
31: continue
32: end if
33: map(m.R) = m.tts
34: EXPANDSTEP(m) . Recursive call.
35: end if
36: end for
37: end function



CHAPTER 6

Reducing Expansions with Pivot Cliques

In this section we exploit a well known fact about triangulated graphs to reduce the number of successor
steps generated when expanding a step in the optimal search algorithms. This should reduce number of
steps generated and thus provide a performance improvement. The idea we introduce here chooses a
clique for which successor steps will not be generated. We call this clique for a pivot clique and prove
that any triangulation, including the optimal triangulation, can be obtained when reducing expansion
using pivot clique.

Theorem 4 Let G = (V,E) be a incomplete graph containing at least 3 nodes. For any partial elimination
order σ = (x1,x2,x3, . . . ,xi−1) of G there exists at least two non-adjacent nodes xi and x j, such that the same
triangulated graph GT can be obtained regardless of whether xi or x j is eliminated next.

Proof Elimination of a node, introduction of fill-ins, corresponds to rendering it simplicial at the time of
elimination in the resulting triangulated graph. In this graph there are always at least two non-adjacent
simplicial nodes, this follows from theorem 1. Consequently, there are always at least two non-adjacent
nodes that can be made simplicial. Thus, there must exist nodes xi and x j that are non-adjacent such that
the same triangulated graph can be obtained, regardless of whether xi or x j is eliminated next. �

This knowledge about partial elimination orders can be applied directly to DFS and BFS with only
minor changes to the algorithms, as shown in algorithm 13 and explain further. Recall that a step in both
of these algorithms represents a partial elimination order. And it follows from theorem 4 that there are
always at least two non-adjacent nodes leading to any triangulation, including the optimal triangulation.

As said and seen in algorithm 13, the changes required to BFS are minor. It is only required to
reduce the expansion of the steps using the pivot strategy choosen to apply to BFS. Similar changes may
be applied to DFS so that it can use a pivot strategy.

Algorithm 13 Best First Search with Pivot
1: function BESTFIRSTSEARCH-PIVOT(G)
2: s =CREATESTEP()
3: Insert line 3-10 from algorithm 11
4: ENQUEUE(Q,s)
5: while Q 6= /0 do
6: n =DEQUEUE(Q)
7: Insert line 14-16 from algorithm 11
8: X = n.R\SELECTPIVOT(Gn,Rn,Cn) . Reduce expansion set X with pivot
9: for all v ∈ X do

10: m =CREATESTEP()
11: Insert line 18- 32 from algorithm 11
12: ENQUEUE(Q,m)
13: end for
14: end while
15: end function

29
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Suppose we run BFS on some graph G, where initially |V (G)| > 3. Let n be the step which is
expanded and k = |n.R|, a successor step mi is generated for each node ui ∈ n.R, 1 ≤ i ≤ k, where n.R
denotes nodes not eliminated in step n, i.e. remaining nodes. There are two non-adjacent simplicial
nodes leading to an optimal triangulation. So, it is not necessary create a successor step mi for every
node ui ∈ n.R, 1≤ i≤ k.

Now we choose some singleton subset Cp = {v} of n.R and instead only create a successor step mi

for every node ui ∈ n.R\Cp, 1≤ i≤ l, where l = |n.R\Cp|, at most one of the two nodes leading to any
solution will be excluded, including the optimal solution.

In fact, further removal is possible since we know that the two nodes are non-adjacent we can choose
Cp to be any clique in G, because two non-adjacent nodes cannot both be in the same clique. So, rather
than having the possibility to remove a single node at a step it can be generalized to an entire clique.
This is fairly convenient as cliques are already maintained and therefore readily available. Because of
this choosing a clique, which is the largest subset of n.R is trivial and does not require much additional
computation.

6.1 The Pivot Clique Selection Algorithm

Pivot selection requires that an additional set of nodes is maintained, namely the set which will be
expanded in the successor step mi, denoted Xm. It is important to note that the algorithm alters the set
which is expanded Xm = n.R\Cp, rather than set of remaining nodes n.R. If nodes were removed from
n.R information about the graph could easily be lost, since nodes may have overlapping cliques.

Algorithm 14 shows how a pivot clique is selected. Here, the strategy is to select the largest inter-
secting clique c.

According to theorem 1 we require for correctness that there at least three nodes in the remaining
graph, or rather |n.R|> 3. However, the algorithm does not require a check for this condition as shown
in line 4. This is due to the fact that three remaining nodes would become simplicial and simply removed
(as done in BFS and DFS). Subsequently, m.R = /0 and the branch terminates, since all nodes have been
eliminated from G.

The complexity of algorithm 14 is linear in the number of cliques |C| w.r.t. the for-loop in line 5 and
intersection (line 6) is linear in the number of bits of each clique.

Algorithm 14 MaxSize Pivot Selection
1: function SELECTPIVOTMaxSize(G,R,C)
2: max = 0 . Max. cardinality of intersection.
3: pivot = /0

4: if |R| ≥ 3 then . R is the set of remaining nodes.
5: for ci ∈C do . C is the set of maximal cliques.
6: if |ci∩R|> max then
7: max = |ci∩R|
8: pivot = ci

9: end if
10: end for
11: end if
12: return pivot . The largest intersecting clique.
13: end function
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6.2 Pivot Selection Criteria

There are a number of other ways by which some pivot clique can be selected for removal. In algorithm
14 the largest remaining clique is always chosen. Yet, depending on the input graph there are possibly
better criteria for selecting a pivot clique such that it reduces by highest number of expansions. In
addition, pivot selection could potentially be improved by using tie-breaking rules.

A

B

E

D

H

C

GF

Figure 6.1: Selecting the clique with the
largest intersection.

Selecting the largest clique yields benefits in general,
since it potentially causes the fewest number of expansions
in the successor step. Figure 6.1 illustrates pivot selection.
Initially node A is eliminated, inducing the fill-in {F,C},
which forms the clique P = {C,F,G}. Moreover, the set of
remaining nodes is now R = {A,B,C,D,E,F,G,H} \ {A}.
The clique P is chosen as the pivot, since it is the largest
clique which intersects with the set of remaining nodes.
Now each node in R \P is expanded and new pivot cliques
are potentially chosen in subsequent expansions. Note that
initially every edge in the graph were the largest intersecting
cliques, so any of these could have formed a pivot clique.

Another strategy is to choose a clique of minimum width
and break ties by selecting the largest of such cliques. Here
the minimum width is the cardinality of the family of the
selected clique intersected with the set of remaining nodes. The idea behind such a strategy is to choose
the clique that is most likely to lead to an optimal solution. This way we may generate more children, but
we are less likely to generate as many optimal solutions in the long run. After all we are only interested
in one optimal solutions at termination.

Here is a list of some of the pivot selection strategies we have tested. They all revolve around the
idea of excluding as much as possible or excluding as many steps leading to a potential optimal solution
as possible.

DynamicWidthSize:
The clique with minimum width is chosen as the pivot if the average width of the graph G is larger
than the minimum width of G plus the number of remaining nodes. Otherwise the largest clique
is chosen.

DYNAMICWIDTHSIZE(G)=
{

MINWIDTH(G) , avg(WIDTH(G)) > MIN-WIDTH(G)+ |R|
MAXSIZE(G) , otherwise

DynamicWidthSizePk:
The clique is with minimum width chosen as the pivot if the number of remaining nodes is less
the total number of nodes divided by k, where k > 1. Otherwise the largest clique is chosen as the
pivot.

DYNAMICWIDTHSIZEPK(G) =

{
MINWIDTH(G) , |R|< |V (G)|

k
MAXSIZE(G) , otherwise

First:
Chooses the first clique in the set C as the pivot. c1 ∈C

Last:
Chooses the last clique in the set C as the pivot. cn ∈C : n = |C|
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MaxFill:
Choose the clique which adds the most fill-ins as the pivot. argmax COUNTFILLINS(c)

c∈C

MaxFillFamily:
Choose the pivot clique that has a node, whose family adds the most fill-ins.
argmax COUNTFILLINS(n)

c∈C
: n ∈ f a(c)

MaxSize:
Chooses the largest clique as the pivot. argmax SIZE(c)

c∈C

MaxSizeMaxFill:
Chooses the pivot clique that has the largest size, breaking ties by choosing the clique which adds
more fill-ins.

MAXSIZEMAXFILL(G) =


ci , SIZE(ci) > SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j

ci , SIZE(ci) = SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j∧
COUNTFILLINS(ci) > COUNTFILLINS(c j)

MaxSizeMaxWidth:
Chooses the pivot clique that has the largest size, breaking ties by choosing the clique that has the
largest width.

MAXSIZEMAXWIDTH(G) =


ci , SIZE(ci) > SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j

ci , SIZE(ci) = SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j∧
WIDTH(ci) > WIDTH(c j)

MaxSizeMinFill:
Chooses the pivot clique that has the largest size, breaking ties by choosing the clique that adds
the least number of fill-ins.

MAXSIZEMINFILL(G) =


ci , SIZE(ci) > SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j

ci , SIZE(ci) = SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j∧
COUNTFILLINS(ci) < COUNTFILLINS(c j)

MaxSizeMinFillFamily:
Chooses the pivot clique that has the largest size, breaking ties by choosing F ; the clique with a
node whose family adds the least number of fill-ins.

MAXSIZEMINFILLFAMILY(G)=
{

ci , SIZE(ci) > SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j

ci , SIZE(ci) = SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j ∧ ciisF

MaxSizeMinWidth:
Chooses the pivot clique that has the largest size, breaking ties by choosing the clique that has
minimum width.

MAXSIZEMINWIDTH(G) =


ci , SIZE(ci) > SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j

ci , SIZE(ci) = SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j∧
WIDTH(ci) < WIDTH(c j)

MaxWidth:
Chooses the the clique that has the maximum width of amount all remaining cliques.
argmax MAXWIDTH(c)

c∈C
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Middle:
Always chooses the clique in the middle as the pivot. cm ∈C : m = |C|

2

MinFill:
Chooses the clique that adds the least number of fill-ins as the pivot. argmin COUNTFILLINS(c)

c∈C

MinFillFamily:
Chooses the pivot clique that has a node, whose family adds the least fill-ins.
argmin COUNTFILLINS(n)

c∈C
: n ∈ f a(c)

MinFillSingle:
Chooses the pivot clique, which has a node that introduces the least fill-ins.
argmin COUNTFILLINS(c)

c∈C

MinSizeMaxFillFamily:
Chooses the pivot clique with the smallest size, breaking ties by choosing Q; the clique with a
node whose family adds the most fill-ins.

MINSIZEMAXFILLFAMILY(G)=
{

ci , SIZE(ci) < SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j

ci , SIZE(ci) = SIZE(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j ∧ ciisQ

MinWidth:
Chooses a pivot clique of minimum width. argmin

c∈C
| f a(c)∩R|, where C is the set of cliques and

R is the set of remaining nodes.

MinWidthMaxSize:
Chooses the pivot clique of the smallest width, breaking ties by choosing the clique that has
maximum size.

MAXSIZEMAXFILL(G) =


ci , WIDTH(ci) < WIDTH(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j

ci , WIDTH(ci) = WIDTH(c j) : ∀ci,c j ∈ C (G)∧ ci 6= c j

∧SIZE(ci) < SIZE(c j)

ROT13:
Select some random pivot clique.

6.3 Evaluation of the pivot strategies

In general for sparse graphs the MaxSize strategy works well. We suppose this is because there are many
equally good pivot cliques and many optimal solutions, i.e. many which intersect with the same number
of remaining nodes. In other words, most of them are equally good pivot candidates.

In contrast, for denser graphs the MinWidth strategy has a better payoff. Opposite to sparse graphs,
the clique sizes vary more and as a consequence not all largest pivot cliques are equally good.

From the tables: table.6.1, table.6.2, table.6.3, table.6.4 and table.6.5 It is possible to see that both
MaxSize and MinWidth are the best strategies for finding the pivot clique. Used alone or in combination
with other strategy.

But between MaxSize and MinWidth, in our tests in graphs of size 30 (table.6.1, table.6.2 and ta-
ble.6.3), it is possible to see that MinWidth is better than MaxSize in denser graphs while MaxSize is
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better than MinWidth in sparser graphs. This difference gets more significant in larger graphs as we can
see in the table.6.5 where MinWidth is more than two times faster than MaxSize in a sparse graph of size
60.

This happens because, in sparse graphs, the size of each cliques is more significant, this is, the
standard deviation of the sizes of the cliques is large and so MaxSize strategy is more effective, since this
strategy chooses the clique with the larger size. While in denser graphs, it is the width of each clique
that is more significant and so MinWidth strategy is more efficient.

To get the best of both strategies; MaxSize and MinWidth, we combine the two in the MaxSizeM-
inWidth and MinWidthMaxSize and in fact these to strategies worked out as aspected and the results are
shown in the following tables.

For tables containing all strategies, see appendix B.

Running time in sec
strategy Dense Mid Sparse
MaxSize 0.46 77.91 743.38
MaxSizeMaxWidth 0.45 79.21 781.70
MaxSizeMinWidth 0.45 79.21 736.80
MinWidth 0.38 76.34 1132.76
MinWidthMaxSize 0.37 75.93 1107.40

Table 6.1: Table of best average results for DFS with Pivot in the different graph densities of size 30

Running time in sec
strategy Dense Mid Sparse
MaxSize 0.12 25.19 272.48
MaxSizeMaxWidth 0.12 25.00 272.51
MaxSizeMinWidth 0.11 24.25 265.96
MinWidth 0.12 26.85 410.65
MinWidthMaxSize 0.11 25.04 397.92

Table 6.2: Table of best average results for DFS with Pivot and Oracle in the different graph densities of
size 30

Running time in sec
strategy Dense Mid Sparse
MaxSize 0.45 76.06 743.72
MaxSizeMaxWidth 0.49 76.84 4767.58
MaxSizeMinFill 0.51 80.24 785.95
MaxSizeMinWidth 0.48 76.51 779.95
MinWidth 0.40 74.29 881.27

Table 6.3: Table of best average results for BFS with Pivot in the different graph densities of size 30
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Running time in sec
strategy Dense Mid Sparse
MaxSize 0.43 77.89 794.24
MaxSizeMinFill 0.50 82.15 801.37
MaxSizeMaxWidth 0.48 78.89 780.65
MaxSizeMinWidth 0.45 78.14 784.50
MinWidth 0.36 75.56 916.45

Table 6.4: Table of best results for BFS with Pivot and Oracle in the different graph densities of size 30

Running time in sec
strategy time
MaxSize 27.12
MinWidth 11.26
MinWidthMaxSize 7.09
First 9.95

Table 6.5: Table of best results for BFS with Pivot and Oracle for dense graphs of size 60



CHAPTER 7

Coalescence Prediction using Transposition of PEOs

In this chapter we present a set of theorems for predicting coalescing, which we used in our own method
dubbed ”BFS-Oracle”. Our work is inspired by a transposition ”oracle” for perfect elimination orders
presented in Chandran et al. (2003). Proofs of our theorems and correctness of our algorithms do not
follow from the results presented in Chandran et al. (2003). But our theory, lemma, theorem, and
corollary, presented in section 7.2, is inspired by the work presented in Chandran et al. (2003). We
propose a method for predicting coalescence for an arbitrary number of nodes that are pairwise non-
adjacent.

7.1 The Transposition Oracle for PEOs

In this section a lemma, theorem, corollary and corresponding proofs from Chandran et al. (2003, sec-
tion 2) are reproduced for completeness, but using our notation for convenience. They seek to determine
whether two elements in a perfect elimination order for a given chordal graph can be exchanged. In
contrast to the results we present in the following section, and suggests that our work can be extended.

In this section we denote a perfect elimination order for a chordal graph, G, as a mapping σ : {i ∈
N | i≤ |V (G)|} 7→ V (G). This is basically a mapping from order of elimination to respective nodes.

We denote the set of nodes with a higher position in the elimination order σ than i as Vσ(i,G) = {v |
v = σ( j)∧ j > i}.

For convenience we write nbσ(i,v,G) to denote the neighbour-set of v with a position in σ higher
than i, i.e. nbσ(i,v,G) = nb(v,G)∩Vσ(i,G).

Lemma 1 If b follows a in a perfect elimination order σ, σ(i) = a and σ(i + 1) = b, for a chordal graph G,
where a and b are adjacent then nbσ(i+1,a,G)⊆ nbσ(i+1,b,G).

Proof Since b follows a in σ, nbσ(i,a,G) = nbσ(i + 1,a,G)∪{b} must be true. It is also trivial to see
that the neighbors of a with a higher position in the elimination order than a, denoted nbσ(i,a,G) must
form a clique, otherwise a is not simplicial at the time of elimination, which it must be in a perfect
elimination ordering σ for a chordal graph G. When nbσ(i + 1,a,G)∪{b} forms a clique, then b is
adjacent to all members of nbσ(i+1,a,G), thus nbσ(i+1,a,G)⊆ nbσ(i+1,b,G). �

Theorem 5 If b follows a in a perfect elimination order σ = (. . .a,b, . . .), σ(i) = a and σ(i + 1) = b, for a
chordal graph G, then a and b can be transposed in σ, so that σ′ = (. . .b,a, . . .) with σ′(i) = b and σ′(i+1) = a
is also a perfect elimination ordering for G, if and only if a and b are non-adjacent or nbσ(i + 1,a,G) =
nbσ(i+1,b,G).

Proof σ′ is a perfect elimination order for G if every nb′σ( j,v,G) where σ′( j) = v forms a clique. If for
some j and nb′σ( j,v,G) where σ′( j) = v is not a clique, then v is not simplicial in G when it is eliminated,
which it must be in order for σ′ to be a perfect elimination order for G.

To complete this proof we need to show that nb′σ(i,b,G) and nb′σ(i + 1,a,G) are cliques. We know
that σ is a perfect elimination order, which implies that nbσ( j,v,G) where σ( j) = v is a clique. Conse-
quently this proves that nb′σ( j,v,G) where σ′( j) = v is a clique for all j /∈ {i, i+1}.

36



COALESCENCE PREDICTION Page 37 of 69.

If a and b are non-adjacent in G, then nb′σ(i+1,a,G) = nbσ(i,a,G) and nb′σ(i,b,G) = nbσ(i+1,b,G)
are both cliques, because elimination of b cannot change the neighbour-set of a if they are non-adjacent
in G.

If a and b are adjacent in G and nbσ(i + 1,a,G) = nbσ(i + 1,b,G), then we know that nb′σ(i +
1,a,G) = nbσ(i + 1,b,G) because V ′σ(i + 1,G) = Vσ(i + 1,G), which shows that nb′σ(i + 1,a,G) is a
clique. We know that nb′σ(i,b,G) = nbσ(i+1,b,G)∪{a} and since nbσ(i+1,b,G) = nb′σ(i+1,a,G), it
follows that nb′σ(i,b,G) = nb′σ(i+1,a,G)∪{a} is a clique because we have already shown that nb′σ(i+
1,a,G) is a clique. Therefore nb′σ(i+1,a,G)∪{a} is a clique.

If a and b are adjacent in G and nbσ(i + 1,a,G) ⊂ nbσ(i + 1,b,G) then nb′σ(i,b,G) is not a clique,
because a ∈ nb′σ(i,b,G) and a is non-adjacent to at least one node in nbσ(i + 1,b,G) since nbσ(i +
1,a,G)⊂ nbσ(i+1,b,G). �

Corollary 2 If b follows a in a perfect elimination order σ = (. . .a,b . . .), σ(i) = a and σ(i + 1) = b, for a
chordal graph G, then a and b can be transposed in σ, so that σ′ = (. . .b,a . . .), σ′(i) = b and σ′(i+1) = a, if
and only if a and b is non-adjacent or |nbσ(i,a,G)|= |nbσ(i+1,b,G)|+1.

Proof If a and b are non-adjacent the result follows from theorem 5. If a and b are adjacent it
follows from lemma 1 that nbσ(i + 1,a,G) = nbσ(i + 1,b,G) if |nbσ(i + 1,a,G)| = |nbσ(i + 1,b,G)|
because nbσ(i + 1,a,G) ⊂ nbσ(i + 1,b,G) which means that nbσ(i + 1,a,G) cannot have elements
not in nbσ(i + 1,b,G), so if both are of the same size they must be equal. We also know that
nbσ(i + 1,a,G)∪{b} = nbσ(i,a,G) and nbσ(i + 1,b,G) = nbσ(i,b,G), which means we can say that
|nbσ(i+1,a,G)|= |nbσ(i,a,G)|−1 and |nbσ(i+1,b,G)|= |nbσ(i,b,G)|, which in turn proves that the
equation |nbσ(i,a,G)|= |nbσ(i+1,b,G)|+1 is equivalent to |nbσ(i+1,a,G)|= |nbσ(i+1,b,G)|. �

7.2 Coalescence Prediction

From theorem 1, which states that a non-complete triangulated graph with more than two nodes always
has at least two non-adjacent simplicial nodes, it follows that there exists more than one perfect elimina-
tion order for any triangulated graph. This result can also be obtained from corollary 2, which suggests
under some conditions the order in which some nodes are eliminated does not matter.

In this section we propose a method for predicting coalescence. This work is inspired by corollary
2 (Chandran et al., 2003), but as previously mentioned the correctness of our results do not follow from
2. Rather, we present independent proofs for our results.

Lemma 2 Let G be a graph, then a set of nodes Z ⊂ V (G) is pairwise non-adjacent {a,b} /∈ E(G) and
∀a,b ∈ Z, if and only if Z is also pairwise non-adjacent in any partially triangulated graph of G, where Z has
been eliminated, {a,b} /∈ E(GT ) and ∀a,b ∈ Z, where GT is a partial triangulation obtained by elimination of
Z in any order.

Proof Elimination of a ∈ Z can only introduce fill-ins to nodes in f a(a,G) and since a is non-adjacent
to all other nodes in Z, f a(a,G)∩Z = /0, it follows that elimination of a cannot introduce a fill-in to any
node in Z. Thus, if nodes in Z are pairwise non-adjacent, then so are nodes in GT after elimination of
Z. The other direction is trivial to prove as elimination only introduces fill-ins, thus if nodes in Z are
pairwise non-adjacent in GT , where Z has been eliminated, Z is also pairwise non-adjacent in G. �
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Theorem 6 Let G be a graph and Z ⊂ V (G), where {a,b} /∈ E(G) and ∀a,b ∈ Z, be a set of pairwise non-
adjacent nodes. The set of fill-ins F introduced by elimination of Z is the same regardless of the order in which
Z is eliminated.

Proof Let Fa denote the fill-ins introduced by elimination of a ∈ Z, then F =
S

i∈Z Fi is the set fill-ins
introduced by elimination of all nodes in Z. The set of fill-ins Fa introduced by elimination of a ∈ Z can
only be changed by the elimination of some b ∈ Z if (i) b is a neighbour of a, (ii) Fb introduces a new
neighbour to a or (iii) if there exists some fill-in {c,d} ∈ Fb, where c,d ∈ f a(a,G).

(i) is not the case since all nodes in Z are pairwise non-adjacent, and it follows from lemma 2 that
this property is maintained during elimination, b ∈ Z cannot be a neighbour of a.

In the proof of lemma 2 we also showed that no elimination of b ∈ Z can introduce a fill-in such that
a ∈ Z gets a new neighbour, thus (ii) cannot occur.

So, the only way, (iii), for which Fa can be changed by the elimination of some node b ∈ Z is if b
introduces a fill-in, f , between two neighbors of a. However, such a change would only move f from Fa

to Fb, which means that the fill-in f would still be in F =
S

i∈Z Fi. Thus, the order in which nodes in Z
are eliminated does not change the set of fill-ins added. �

Corollary 3 Let G be a graph, and Z ⊂ V (G), where {a,b} /∈ E(G) and ∀a,b ∈ Z, be a set of pairwise non-
adjacent nodes. Then the set of triangulated graphs of G that can be obtained from the partial triangulation
GT , where all the nodes in Z have been eliminated, are the same regardless of what order Z was eliminated in.

Proof It follows from theorem 6 that the set of fill-ins, F , introduced to G by the elimination of Z, is
the same regardless of the order in which Z is eliminated. And since the partial triangulation GT =
(V (G),E(G)∪F), is produced by adding F to G, GT must also be the same regardless of what order
the nodes in Z were eliminated. �
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Figure 7.1: The search tree with oracle
coalesce prediction.

Corollary 2 suggests that theorem 6 could be extended to
also cover some adjacent nodes, a and b, in G if |nb(a,G′)|=
|nb(b,G′)|, where fill-ins for a have been introduced in G′.
But in pratical applications this is rarely the case, and con-
trary to theorem 6 this property might be harder to general-
ize.

Corollary 3 can be used to predict coalescence when
searching in the space of all elimination orders. In figure
7.1 the search tree for all triangulations of a graph G, with
nodes a,b,c ∈ V (G), where a and b are non-adjacent and c
is adjacent to a and b, is illustrated. Notice, that the elimina-
tion order (b,a) is never explored. In this small example co-
alescence prediction does not benefit much, but when there
are more nodes this will give substantial improvements in
efficiency, which is apparent in the test results.

7.3 Best First Search with Oracle

Corollary 3 can be exploited when searching in the space of
all elimination orders. We already have coalescing, which
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ensures that only one of the partial elimination orders (a,b) and (b,a) will be expanded. So, corollary
3 can only be used to predict coalescing. This means that we will reduce the number of successor steps
generated by never inserting steps into the queue, which would coalesce in any case.

In algorithm 15 we extend the step structure with a set, X , the expansion set. So, m.X is the expansion
set of step m. The expansion set is the nodes for which successor steps should be generated. During
expansion of a step we maintain a set called Ex, the expendable set, which is initialized in line 9. The
expendable set Ex contains the nodes for which successor steps need not be generated, unless they are
in f a(v,m.G), i.e. the family of the node v just eliminated. We add a node, a, to the expendable set, Ex,
(i) if it was not in the expansion set of the step currently being expanded a /∈ n.X or (ii) if some successor
step m, where v = a, has already been generated.

Initially, the expansion set, s.X = s.R, will be the set of remaining nodes, s.R. When the initial step,
s, is expanded, the expendable set, Ex, will be initialized to /0 in line 9. Thus, when the successor step mv,
where v is eliminated is generated, a node a can only be in Ex if some other successor step, ma, where
a was eliminated and v /∈ Ex have been generated. If this is the case and a /∈ f a(v,G[m.R]), it follows
from corollary 3 that we are not required to explore both steps with the partial elimination orders (a,v)
and (v,a), respectively. And since a step, ma, with partial elimination order (a) and v ∈ ma.X , there is
no need to include a in the expansion set mv.X .

When we are not expanding the initial step s there will be cases where Ex is initialized to some
non-empty set in line 9. However, a node a will only be in Ex initially for the expansion of step n with
partial elimination order (p1, . . . , pk), if a is not in n.X . This implies that a is non-adjacent to p j, . . . , pk,
for some j < k. And thus, by corollary 3 there is no need to explore a in the next expansion of successor
step m, where v was eliminated if a /∈ f a(v,G[m.R]). Because this will coalesce with some other step m′

with the partial elimination order (p1, . . . ,a, p j, . . . , pk), which must have been generated with v ∈m′.X .

Algorithm 15 Best First Search with Oracle
1: function BESTFIRSTSEARCH-ORACLE(G)
2: s =CREATESTEP()
3: Insert line 3-10 from algorithm 11
4: s.X = s.R . Initial expansion set contains all remaining nodes
5: ENQUEUE(Q,s)
6: while Q 6= /0 do
7: n =DEQUEUE(Q)
8: Insert line 14-16 from algorithm 11
9: Ex = n.R\n.X . Initialize X to nodes that need not be expanded

10: for all v ∈ n.X do . Notice that we use the expansion set n.X here
11: Ex = Ex∪{v} . Add v to node that can be excluded X if not in f a(v)
12: Insert line 18- 32 from algorithm 11
13: m.X = m.R\ (Ex \ f a(v,m.G[m.R])) . Reduction of the expansion set for m
14: ENQUEUE(Q,m)
15: end for
16: end while
17: end function

By analyzing algorithm 15 one can see that if | f a(v,m.G[m.R])| on line 13, is 0, this should cut
the running in half. However, it stands to reason that | f a(v,m.G[m.R])| 6= 0, but compared to |m.R| it
is fair to say that | f a(v,m.G[m.R])| is close 0, especially for sparse graphs. And then it should not be
unreasonable to expect a speedup of around 50 percent, which is also what practical application shows.

Moreover, it is possible to apply this improvement to the DFS algorithm presented earlier. A compar-
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ison pf depth first search and best first search, with and without this improvement, is presented in chapter
10, along with a comparison of all the other improvements. It is also worth noting that this improve-
ment, while it does not reduce the search space (without coalescing) to all chordal graphs only, it does
provide a reduction of the search space, which might also be useful when searching for a triangulation
with another optimality criterion, such as minimum treewidth or minimum number of fill-ins.

7.4 Summary

The improvement proposed in this chapter provide a significant speedup. Whilst it may be possible to
extend theorem 6 to cover some adjacent nodes, these improvements do not reduce the search space
from all elimination orders into just the set of all distinct triangulations, which the results in Chandran
et al. (2003) suggest would be a significant reduction. This indicates that research into other kinds of
search algorithms, which only consider the space of triangulations might lead to further improvement.



CHAPTER 8

Maximal Prime Subgraph Decomposition

Maximal prime subgraph decomposition (MPD) essentially boils down to finding ways to decompose a
graph into subgraphs such that each subgraph can be triangulated independently. In other words, it intro-
duces the divide-and-conquer strategy to the realm of triangulation. This may yield several advantages,
such as parallelization, incremental triangulation and smaller problem sizes.

That being said, not all graphs admits decomposition, so it is not guaranteed to yield benefits in all
cases. In addition, computing an MPD introduces extra overhead, which must also be taken into account.
For this reason, it would be useful being able to efficiently discern whether it is worth computing an MPD
or if a graph even allows decomposition.

Olesen and Madsen (2002) present methods for decomposing a Bayesian network into an MPD. This
algorithm is used in Flores and Gamez (2003) to decompose a graph during triangulation. However, their
work shows that there is not many decompositions to find, so we will attempt decomposition during each
step of the triangulation process in algorithm 11. For this purpose we present a minimalistic and practical
method for quickly finding decompositions in graphs without simplicial nodes, for which the maximal
cliques are known.

8.1 Finding Decompositions

We say that graph G = (V,E) admits decomposition if some clique, C, splits the graph, such that G[V \C]
is disconnected. When we say that two sets of nodes A and B in G[V \C] are disconnected, we shall
assume that both A and B are non-empty, it also implies that A and B are disjoint, and that all paths from
a node in A to a node in B in the graph G passes through at least one node in C.

Definition 6 (Separator) The clique C in G is a separator if G[V \C] is disconnected, and we say that G
admits decomposition with respect to the separator C.

Definition 7 (Prime Graph) A prime graph is a graph that does not admit decomposition, i.e. has no separa-
tors.

Definition 8 (Part) We say that A and B are two parts of G with respect to a separator C if A and B are two
disjoint and disconnected sets of nodes in G[V \C].

The methods presented in Tarjan (1985) and Olesen and Madsen (2002) initially use a minimal trian-
gulation to find separators. The method in Olesen and Madsen (2002) the junction tree for some minimal
triangulation is created and separators are merged until all separators are complete in the original graph,
the result is called an MPD-junction tree. It is possible to show that the leaves of an MPD-junction tree
can be eliminated first, which is a great property for triangulation.

In Flores and Gamez (2003) the method from Olesen and Madsen (2002) is used for finding de-
composition after which the subgraphs are triangulated. However, in Flores and Gamez (2003) it is
concluded that most of the subgraphs found by decomposition are initially simplicial. This leads us to
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focus on finding decomposition in graphs without simplicial nodes. In reality such decompositions are
not common, so we will not maintain an MPD-junction tree, but rather just find the smallest leaf of such
a tree.

Lemma 3 If a graph admits decomposition, the separator must be a subset of one of the maximal cliques of
the graph.

Proof By definition 6, a separator must be a clique, and since all cliques are subsets of maximal cliques,
so must a separator. If a separator is not a subset of a maximal clique, it is not a clique. �

Theorem 7 A graph G without simplicial nodes admits decomposition if and only if some maximal clique C
in G is a separator for G.

Proof (Theorem 7) Let G = (V,E) be a graph without simplicial nodes, which has a separator C, where
C is not a maximal clique in G, such that G[V \C] contains at least two disconnected sets of nodes A and
B (A and B are parts of G with respect to the separator C).

Then if A∪C is a clique in G, G contains the simplicial node A, which gives a contradiction. So, we
assume that A∪C is not a clique, which implies that expanding C to be a maximal clique will not make
A a subset of C. The same argument holds for B, thus when there is a non-maximal clique separator for
a graph G, which has no simpicial nodes, then there is also a maximal clique separator for G. �
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Figure 8.1: Graph with simplicial nodes that admits decomposition.

Figure 8.1 illustrates a graph that admits decomposition. The clique S = { f ,c} is a separator that
splits the graph into three parts, A = {h,g, j}, B = {a,b,d} and C = {e}. However, C∪S is a clique, so
C is simplicial, as explained in the proof above. If we remove e from the graph G on figure 8.1, both
S1 = { f} and S2 = {c} will be separators for G. But as shown in the proof, expanding the separator up
to S = { f ,c} will always be possible as long as the separated parts are not simplicial.

By theorem 7 we can find any decomposition permitted by a graph without simplicial nodes by
determining if the some maximal clique is a separator. Moreover, if we wish to check if elimination of
some node in the graph introduces a separator, it is enough to test if one of the new cliques is a separator,
since elimination preserves paths and does not remove maximal cliques, rather, they are merged.
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8.2 Exploiting Decomposition

The fact that some graphs admit decomposition can be exploited to reduce the number of elimination
orders that need to be explored. In fact, as stated and proved below, we can say that a part of a graph
(see definition 8) can be eliminated first.

Theorem 8 Let G = (V,E) be an incomplete graph with at least three nodes, for which C = {c1, . . . ,ck} is a
separator, such that G[V \C] contains two disconnected sets of nodes A = {a1, . . . ,ai} and B = {b1, . . . ,b j}.
Then an elimination order σ = (a1, . . . ,ai,b1, . . . ,b j,c1, . . . ,ck) exists for every triangulation GT of G.

Proof From theorem 4 it follows that any clique can be eliminated last. Thus, we can say that there
exists an elimination order of the form σ′ = (n1, . . . ,ni+ j,c1, . . . ,ck) where n1, . . . ,ni+ j ∈ A∪B for every
triangulation of G. However, since there are no paths between A and B in G[V \C], it follows that
elimination of any node in A∪B cannot create such a path. That is, the order in which nodes from A
and B are eliminated with respect to one another does not matter. Thus, an elimination order of the form
(a1, . . . ,ai,b1, . . . ,b j,c1, . . . ,ck) must exist for every triangulation of G. �

It is fairly obvious that theorem 8 can be exploited to limit the exploration of elimination orders. If
the graph G = (V,E) decomposes with respect to C, such that two sets of nodes A and B are disconnected
in G[V \C], then there is no need to explore elimination orders where nodes from C ∪ B have been
eliminated before all the nodes in A have been eliminated. This provides a significant reduction in the
number of elimination orders that needs to be explored.

8.3 Best First Search with Maximal Prime Subgraph Decomposition

The idea for implementing best first search (algorithm 11) with prime subgraph decomposition is to look
for decompositions every time a node is eliminated from the graph. Then decompositions are used to
limit the number of expansions to be explored, as is possible from theorem 8.

Algorithm 16 takes a graph G without simplicial nodes, a set of maximal cliques, separator can-
didates, C, and the smallest part admitted using any maximal clique not in C as the separator. The
algorithm returns the smallest part of the graph.

This is done by iterating over the set of separator candidates (line 2). Then finding the remaining
nodes, R, when this separator is removed (line 3). Once this is done, we choose some node n∈R and find
all nodes, I, in G[R] that can be reached from n. This is done using the REACHABLE(. . . ) function, which
can be implemented efficiently using breath first search. Then on line 7 we test if G[R] is disconnected,
i.e. I 6= V (G)\ c, and the cardinality of the part, I, found is smaller than S. If both of these tests hold,
then S = I. On line 10 we remove the part, I, just found from R, such that when we choose another
n ∈ R, provided that G[R] was disconnected, another part will be found. This is carried out until all parts
of the graph have been found. Consequently, the smallest part, S, has been found.

Algorithm 17 lists the pseudo code for best first search with maximal prime decomposition. In this
algorithm the step structure has been extended with a set representing the subgraph part S. n.S denotes
the smallest part of the remaining graph for step n, w.r.t. some separator. Note, that the separator is not
in n.S, so this set can be used for expansion on line 9. This follows from theorem 8. This is also why the
algorithm looks for the smallest part of the graph, so that expansion is limited as much as possible. The
subgraph part set, m.S, is computed by calling DECOMPOSE(. . . ) on the remaining graph, including the
new maximal cliques as separator candidates and smallest part admitted using another maximal clique
as input. Note, that in cases where all nodes of a smallest part have been eliminated the algorithm
searches for decompositions with all maximal cliques as separator candidates. It should also be noted
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Algorithm 16 Find Smallest Prime Subgraph using Maximal Cliques
1: function DECOMPOSE(G,C,S)
2: for all c ∈C do
3: R = V (G)\ c . Remaining nodes, e.g. without the separator candidate
4: repeat
5: Let n be a node in R
6: I =REACHABLE(G[R],n) . Find reachable nodes from n
7: if I 6= V (G)\ c∧|I|< |S| then . If G[R] is disconnected and |I|< |S|
8: S = I
9: end if

10: R = R\ I . Remove the part we just found, so other parts can be found.
11: until R 6= /0

12: end for
13: return S . Return smallest subgraph without separator.
14: end function

that the set of fill-ins added, the set of nodes with new fill-ins, as well as the set of new cliques are
not expensive to find, as they are computed in algorithm 10, and thus for a practical implementation
UPDATECLIQUES(. . . ) would require modification.

Algorithm 17 Best First Search with Decomposition
1: function BESTFIRSTSEARCH-MPD(G)
2: s =CREATESTEP()
3: Insert line 3-10 from algorithm 11
4: s.S =DECOMPOSE(s.G[s.R],s.C,s.R) . Attempting initial decomposition
5: ENQUEUE(Q,s)
6: while Q 6= /0 do
7: n =DEQUEUE(Q)
8: Insert line 14-16 from algorithm 11
9: for all v ∈ n.S do . Limit expansion to n.S

10: Insert line 18- 32 from algorithm 11
11: if n.S∩m.R = /0 then
12: m.S =DECOMPOSE(m.G[m.R],m.C,m.R)
13: else
14: F = E(m.G)\E(n.G) . The set of fill-ins added.
15: I = {v,u | {u,v} ∈ F} . The set of nodes with new fill-ins.
16: NC = C ∈ m.C |C∩ I 6= /0 . Find new cliques
17: m.S =DECOMPOSE(m.G[m.R],NC,n.S∩m.R) . Find new decompositions
18: end if
19: ENQUEUE(Q,m)
20: end for
21: end while
22: end function

The improvements presented in chapter 6, about reduction of an expansion set with a pivot clique,
cannot always be combined with maximal prime decomposition as the proof of theorem 8 relies on
the ability to eliminate nodes from one clique last. However, reduction of the expansion set using
a pivot clique, can still be done when n.S = n.R, i.e. no decomposition have been found. Practical
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application shows that decomposition does not happen very often, and some dense graph does not admit
decomposition during elimination.

The coalescing prediction presented in chapter 7 can be combined with algorithm 17. A pseudo
implementation of algorithm 17 combined with coalesce prediction and pivot, when there is no decom-
position, can be seen in appendix A. And with coalesce prediction and pivot selection, where there is no
decomposition, decomposition actually starts to payoff. For more information see chapter 10 where the
methods are compared.

Summary

The use of decomposition in algorithm 17 is relatively simple and minimalistic. The approach focuses on
exploiting decomposition with as little overhead as possible. Similar work in Flores and Gamez (2003)
indicates that the number of non-simplicial decompositions is usually low. In addition, unpublished
work by Thorsten J. Ottosen indicates that the overhead of building and using an MPD-junction tree as
introduced in Olesen and Madsen (2002) is too expensive.

Even with the rather small overhead incurred by algorithm 17, decomposition does not yield any ad-
vantages by itelf, even for graphs which admit an MPD. Rather it should be combined with coalescence
prediction and pivot selection. Nonetheless, the concept does have value, since it opens up for more
approaches to the problem of triangulation. It is also likely that algorithm 16 could be implemented
more efficiently.

It might also be possible to develop some heuristic to reduce the number of times the graph is tested
for decomposition. As it would not be a serious problem if a decompositions is missed once in a while,
if such a heuristic dramatically reduces the number of fruitless decomposition checks. It is also likely
that some efficient method for disproving the existence of a decomposition could be found.



CHAPTER 9

Reducing Expansion Using Graph Symmetry

In this chapter we will introduce the idea of using graph symmetry for reducing the number of successor
steps generated. We will not reach any performance improvements, but show that graph symmetry is not
very common.

9.1 Defining Node Equivalence

a b

e c

d

Figure 9.1: A graph with symmetry.

If we consider figure 9.1 we will notice that we will get the same kind of fill-ins and remaining graph
regardless of what node is eliminated first. It simply does not matter whether we eliminate a,b,c,d or
e first, it will introduce one fill-in and the remaining graph will have four node connected in a cycle
without a chord. We say that the nodes are equivalent, which leads us to the following definition.

Definition 9 (Node equivalence) Two nodes a and b in a graph G are equivalent if exchanging their labels in
a graph G′ where all other nodes are unlabeled does not change anything.

If we study the search algorithms for optimal elimination orders, BFS and DFS, they will both
generate a successor step for each node in the graph on figure 9.1. And as the nodes are equivalent,
following definition 9, successor steps of these successor steps will also be generated. Coalescing will
ensure of that successor steps will only be generated for one of the steps (a,b) and (b,a). But coalescing
will not be every effective and the queue will have no effect as all the successor steps are equivalent and
thus have the same total table size. This leads us to the following hypothesis.

We can address the shortcomings for the queue and coalescing map, by finding equivalent nodes
before generating successor steps, and only generate one successor step for each set of equivalent nodes,
thus limiting the number of computation steps and improving performance.

We will later show that in practical application this has a very limited effect as the number of equiv-
alent nodes is fairly low in large graphs, and the cost of finding equivalent nodes is far greater than the
few extra expansions required.
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9.2 Finding Node Equivalence

Algorithm 18 can be used to find unique nodes. The idea behind the algorithm is to create a table
with a row for each node and a column for each iteration. During first iteration the entry for node v is
|nb(v,G)|. In the following iterations the entry for node v is a 2-tuple of the previous entry for v and the
set of previous entries for the neighbours of v. After atmost |V (G)| iterations, any two nodes with the
same entry in the last iteration are equivalent.

The algorithm described starts by saying that any two nodes with different number of neighbours
cannot be equivalent. Then the algorithm starts to propogate the number of neighbours throughout the
graph. Eventually, entry |V (G)| for node v will hold a unique representation of the graph seen from v’s
point of view. That is, that the entire graph can be reconstructed from entry |V (G)| for node v, but it
will be unlabeled.

The approach described above requires a lot of memory as it will eventually hold |V (G)|2 more or
less complete representations of the graph. However, since we’re only interested in whether or not two
entries differ, we can assign a unique number N to each entry, and keep a value table Vtb, where we
associate values with unique numbers. The value table can be reset after each iteration, and we only
need access to the previous iteration, so we need only maintain two columns of the table.

This means that algorithm 18 can be implemented quite efficiently, and with more than O(|V (G)|)
memory in O(|V (G)|3) time. A pratical implementation of the algorithm can also be done without
dynamic allocations. And as illustrated in algorithm 18 we can also terminate the algorithm as soon as
we can conclude that all nodes are unique.

Algorithm 19 shows how algorithm 18 can be used to limit the expansion of algorithm 11. This is
done by only generating successor steps for the set of unique nodes. That is, if the unlabeled remaining
graph after elimination of a is the same as the unlabeled remaining graph after elimination of b, then
only one successor step is generated for a and b.

9.3 Conclusion on Exploitation of Graph Symmetry

Equivalence between nodes, as defined in defintion 9, does not occur often. If we consider graphs with
only a few nodes, it can be somewhat hard to construct graphs without node equivalence. However,
when the number of nodes is larger and the graphs are dense, node equivalence can be rare.

Pratical implementation and evaluation of algorithm 19, shows that node equivalence does not occur
often. And even for sparse graphs the overhead for identifying equivalence is higher than the benefit of
reduction in the number of expansions.

In chapter 10, where comparisons are presented, algorithm 19 has a speedup constant of 0.74, which
means that it is about 26% slower (on sparse graphs). If algorithm 18 is combined with depth first search,
algorithm 12, then it is only about 3% slower (on sparse graphs). Nevertheless, we can conclude that
there is not much node equivalence to find, and finding it does not provide a significant reduction in the
number of expansions.

It might be possible that some heuristic can be used to reduce the number of times FINDUNIQUEN-
ODES(. . . ) is called, or that another algorithm can be used to find equivalence, perhaps it is possible to
create an algorithm that can update the equivalence information from the previous step. However, it is
unlikely to payoff, as the number of equivalent nodes is fairly low.
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Algorithm 18 Find unique nodes
1: function FINDUNIQUENODES(G)
2: unique = 0
3: for all v ∈ V (G) do . First iteration
4: tbcur(v) = |nb(v,G)|
5: end for
6: repeat . All the following iterations
7: tbprev = tbcur . Swap previous and current tables
8: Vtb = /0

9: uniqueprev = unique
10: unique = 1
11: for all v ∈ V (G) do
12: V = /0

13: for all n ∈ nb(v,G) do
14: V = V ∪{tbprev(n)}
15: end for
16: V = (tbprev(v),V )
17: N = 0
18: for all (n,v) ∈Vtb do
19: if v = V then . Check if V is in Vtb
20: N = n
21: end if
22: end for
23: if N = 0 then . Insert V in Vtb
24: N = unique . Find a unique number
25: unique = unique+1
26: Vtb = Vtb∪{(N,V )}
27: end if
28: tbcur(v) = N
29: end for
30: if unique = |V (G)| then
31: return V (G) . Conclude that all nodes are unique
32: end if
33: ∆unique = unique−1−uniqueprev

34: until ∆unique = 0
35: uniquenodes = V (G)
36: for v ∈ uniquenodes do
37: for n ∈ uniquenodes do
38: if tbcur(v) = tbcur(n) then
39: uniquenodes = uniquenodes \{n} . Conclude that n and v are equivalent
40: end if
41: end for
42: end for
43: return uniquenodes
44: end function
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Algorithm 19 Best First Search with Unique Node
1: function BESTFIRSTSEARCH-UNIQUE(G)
2: s =CREATESTEP()
3: Insert line 3-10 from algorithm 11
4: ENQUEUE(Q,s)
5: while Q 6= /0 do
6: n =DEQUEUE(Q)
7: Insert line 14-16 from algorithm 11
8: for all v ∈FINDUNIQUENODES(n.G[n.R]) do
9: Insert line 18- 32 from algorithm 11

10: ENQUEUE(Q,m)
11: end for
12: end while
13: end function



CHAPTER 10

Comparison of Triangulation Methods

This chapter will compare the results of some of the algorithms described in chapters 3 through 8.
Minimal triangulation algorithms will be compared based on number of edges added and the total

table size of the triangulated graph. Since these algorithms are relatively fast and produce minimal
triangulations, yet do not guarantee optimal table size, they are reviewed on how far they deviate from
the optimal total table size. Moreover, these algorithms will be compared with respect to the average
number of fill-in edges added.

The comparison of greedy heuristic algorithms will be based on the average total table size of the
triangulated graphs, both among the different greedy algorithms and how far from the optimal solution
their results are on average.

Both greedy heuristic and minimal triangulation algorithms are relatively fast, therefore it is not
interesting to compare them based on their running time.

Optimal algorithms guarantee the optimal solution and therefore always produce the same total table
size, regardless of any enhancements to improve runtime efficiency. Due to this, the various strategies
and pruning implementations are compared based on their respective running times.

All results were produced on the same 1.66GHz dual core laptop with 1.5GB RAM running x86
Ubuntu 10.04.

All algorithms were run on graphs of three different sizes; graphs consisting of 20, 30 and 40 nodes.
There are 28 different graphs of 20 nodes, 73 different graphs of 30 nodes and 21 different graphs of 40
nodes.

The test graphs range in density from 11−39%.

10.1 Minimal Methods

This section relates to the methods described in chapter 3.
LBTriang and MCS-M have been used on the same graphs which have been divided into 3 categories;

graphs with 20, 30 and 40 nodes. Table 10.1 contains the average results for running the LBTriang and
MCS-M algorithms on the same graphs from each category. In the data provided, running time has been
omitted as these algorithms have negligible runtime on the test graphs. The focus of these algorithms
is finding the triangulation which does not have a smaller subset of fill-ins. For comparison with other
algorithms, average total table size of the triangulated graph has also been included.

# of nodes Average edges Average tts
LBTriang MCS-M LBTriang MCS-M

20 90 98 2418 8546
30 226 252 1014959 7716582
40 381 445 155034778 3124739955

Table 10.1: Average edges after triangulation and tts for the minimal algorithms

While LBTriang does not rely on the ordering of the nodes (it does require an ordering; but produces
the same amount of fill-ins for different orderings on the same graph), the MCS-M algorithm relies
heavily on the ordering of nodes. This may explain why LBTriang pulls ahead and produces, on average,
about 11% less fill-ins compared to MCS-M.
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10.2 Greedy Heuristics

This section covers the results from the greedy heuristic methods described in chapter 4. When con-
sidering greedy heuristics, time consumption is not particularly interesting, since they are fast in terms
of time complexity. Due to this, the running times of the algorithms has been omitted in the following
data. In this case, the relevant metric is the average divergence from optimal total table size. Recall that
minfill searches for a triangulation with the least amount of fill-ins, minwidth searches for a triangulation
with the lowest treewidth, minwidth 3LA is the same, but with a look-ahead of k = 3.

# of nodes Average tts
minfill minwidth minwidth 3LA optimal (bfs/dfs)

20 3252 4094 2596 2076
30 5044 5097 11870 5028

Table 10.2: Average tts for the three greedy heuristic algorithms

Table 10.2 shows the average total table size for three greedy heuristic algorithms. The same graphs
of 20 and 30 nodes were used for the algorithms. Total table size of the optimal solution is also provided
for comparison. Figure 10.1 shows the results for the algorithms on graphs with 20 and 30 nodes.

On graphs with 20 nodes, it appears that applying lookaheads yields triangulations of smaller tts,
although increasing the lookahead may introduce more overhead and cause more divergence. As soon
as the number of nodes in the graphs starts to grow, 3LA appears to be doing exactly this and makes bad
choices, which introduce more fill-ins. This tendency is also found on graphs with 40 nodes but was not
included in the data, due to the fact that some of the graphs of 40 nodes were intractable with an optimal
algorithm, and therefore has no basis to be compared against.

In general min-fill seems to be the better choice as it produces the best results, since thet are closest
to optimal in a short amount of time.

10.3 Optimal

This section relates to the methods described in chapter 5.
Tables 10.3-10.4 contains the average running time of the BFS and DFS algorithms with different

pruning strategies and the use of coalescence prediction. The standard BFS and DFS algorithms are also
included for comparison. The algorithms have been run on the same graphs of 30 nodes with different
densities (sparse 39%, medium 22-32% and dense 11-16%). According to section 6.3 MaxSize is on
average the best pivot strategy, and is therefore the pivot strategy of choice for comparisons.

As seen in the tables below, all optimizations, except MPD, improve the running time of both BFS
and DFS. It seems the MaxSize pivot strategy improves both BFS and DFS equally, whereas Oracle
improves DFS more. Table 10.5 shows speed-up constants for BFS- and DFS-MPD-PO-MaxSize, com-
pared to BFS and DFS implementation with no optimizations on the different density of graphs.
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Running time in sec
Density high (39%) mid (22-32%) low (11-16%)
BFS 0.10 4.02 78.37
Unique 0.11 5.51 105.43
Oracle 0.04 1.62 41.51
MPD 0.10 4.14 82.27
Pivot-MaxSize 0.07 2.81 49.18
Pivot-MinWidth 0.06 2.72 60.67
MPD-Oracle 0.04 1.73 41.82
MPD-Pivot-MaxSize 0.07 3.03 55.55
MPD-Pivot-MinWidth 0.06 2.86 62.34
Oracle-Pivot-MaxSize 0.07 0.94 28.77
Oracle-Pivot-MinWidth 0.06 0.99 29.15
MPD-Oracle-Pivot-MaxSize 0.02 1.03 30.34
MPD-Oracle-Pivot-MinWidth 0.02 1.04 28.85

Table 10.3: Average running time for BFS with various implementations of pruning strategies and coa-
lescence prediction, including combinations of these.

Running time in sec
Density high (39%) mid (22-32%) low (11-16%)
DFS 0.10 4.34 97.73
Unique 0.10 5.04 99.29
Oracle 0.04 1.72 37.59
MPD 0.10 4.54 100.05
Pivot-MaxSize 0.06 2.86 49.29
Pivot-MinWidth 0.06 2.79 73.92
MPD-Oracle 0.04 1.86 39.89
MPD-Pivot-MaxSize 0.07 3.02 51.45
MPD-Pivot-MinWidth 0.06 2.87 73.97
Oracle-Pivot-MaxSize 0.02 0.92 17.92
Oracle-Pivot-MinWidth 0.02 0.98 26.92
MPD-Oracle-Pivot-MaxSize 0.02 1.03 18.91
MPD-Oracle-Pivot-MinWidth 0.02 1.05 28.00

Table 10.4: Average running time for DFS with various implementations of pruning strategies and coa-
lesce prediction, and combinations of these.

high (39%) mid (22-32%) low (11-16%)
BFS 0.50 3.90 2.58
DFS 0.50 4.21 5.17

Table 10.5: Speed-up constants for BFS- and DFS-MPD-PO-MaxSize, compared to BFS and DFS im-
plementation with no optimisations on the different graph densities.
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Figure 10.1: Graphs showing the greedy heuristic algorithms and their tts on graphs with 20 nodes (top)
and 30 nodes (bottom), including the optimal solution (bfs/dfs) for comparison.
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Summary

The minimal methods produce results far from the optimal solution with regard to total table size. They
are however, guaranteed to produce a minimal set of fill-ins, and can be used to find the maximal prime
decomposition of a graph. In conclusion, minimal methods should not be used for triangulation if total
table size should be small.

Greedy heuristics, especially min-fill, are relatively close to getting the optimal results in far less
running time. In fact, if one should use a simple triangulation method, min-fill should be considered as
the first obvious choice. For this approach to work the triangulation must be allowed to be non-optimal
in some of cases, since min-fill can produce non-optimal results on some graphs. A way remedy for
this could, of course, be to idenify all the graphs for which min-fill is non-optimal, and triangulate these
graph with an optimal search method. This, however, introduces the problem identifying graphs, for
which min-fill produces non-optimal results, without first running an optimal method. Look-aheads can
in some cases be used to solve the problem of min-fill not being optimal on some graphs.

However, results presented earlier in this chapter, show the tendency that too many look-aheads
(perhaps compared to the size of the graph investigated) can lead to worse results than with no look-
aheads. So, one should not just choose an arbitrary number of look-aheads, as this can cause further
deviation from the optimal table size. Apply too few look-aheads may simply not give any improvements
whatsoever. It therefore seems that there is a balance between too few and too many look-aheads. The
best number of look-aheads might be effected by the number of nodes, graph density, number of edges,
cliques, etc of a given graph. Nevertheless, since min-fill is cheap, one could perhaps run min-fill several
times on the same graph with a dynamically adjusted number of look-aheads and then select the best
solution out of these.

The optimal methods show improvements in efficiency with each optimization added to the algo-
rithm. The biggest runtime gain appears to be produced with the inclusion of oracle. The best speed-up
achieved is about five times as fast as the original algorithm. MPD, on the other hand, does not improve
in all inclusions, this is because MPD does not provide a speed-up for all graphs, only select few.

In conclusion one would, if possible, always use the method which produces the optimal solution in
the shortest amount of time and with the least space requirement. Since we do not have an algorithm
which has all benefits and none of the downsides, a trade-off will have to be accepted. For faster methods
which allow a varying degree of error compared to the optimal solution in total table size, one should use
greedy heuristics; they will on average produce an acceptable result. If however, this trade-off cannot be
allowed, one should seek to use optimal solutions with as many pruning and coalescing optimisations
aspossible to speed-up the process. Also, some thought should be put into choosing the correct pivot
strategy, with respect to the classification of the graphs to be triangulated. A discussion of which strategy
to choose was presented earlier in section 6.3.



CHAPTER 11

Discussion

In this report we have proposed two new methods to improve the efficiency of optimal/exact search
algorithms. First, we have implemented a method which reduces the number of states explored in the
search space of elimination orders, namely pivot cliques. Secondly, a technique to predict coalescence
of elimination orders can be applied in conjunction with the previously mentioned improvement.

We have also presented, Maximal prime subgraph decomposition (MPD), and showed how it may
improve the efficiency of optimal search for the case of sparse graphs, when used in conjunction with
the two other methods. Note that using pivot cliques is only possible when decomposition in the graph
is not exploited, since the clique separators must be preserved. Still, using pivot cliques enables MPD to
have a fall-back strategy when the graph is not decomposable.

One trend that is immediately apparent is how well min-fill in general yields relatively good trian-
gulations, compared to the other heuristic methods we have experimented with. Also, in a large number
of graphs, min-fill found optimal solutions. Despite this fact we uncovered quite a few graphs where
min-fill did not find optimal triangulations. In general min-fill was worst on graphs of twenty nodes by a
deviation from the optimal solution by about 30 percent. Whereas, for all test graphs consisting of thirty
nodes min-fill on average only deviated slightly (about 0.5 %) from the optimal solution. Also, min-fill
with lookaheads improved the average result for graphs consisting of twenty nodes, which indicates that
it may be benefitial to experiment more with min-fill-LA(k).

It can be discussed whether the graphs are representative of the types of graphs encountered in a
practical real-world setting. Tests have solely been conducted on bipartite graphs, which are generally
some of the hardest graphs to triangulate. This difficulty arises from the large number of combinations
of fill-ins in sparse graphs (Ottosen and Vomlel, 2010b). We were able to confirm this observation from
the results of our experiments on graphs of varying densities. From the results in chapter 10 there is a
clear tendency that sparse graphs take the longest time to triangulate.

Despite our efforts to find methods for improving the efficiency of BFS and DFS we still encountered
sparse test graphs that were intractable, even though the graphs only consisted of forty nodes. Again, we
believe the reason for this difficulty is due to the sheer number of possible combinations sparse graphs
give rise to, which eventually exhausts all available memory.

In any case the test results do show that it is possible to achieve considerable improvements in
efficiency with minor changes to the optimal methods. E.g. the best DFS method exhibited an average
speed-up of a factor five for graphs consisting of thirty nodes. This is clearly an improvement over the
unmodified version of DFS. More powerful hardware could provide further insight into the speed-up
factor for larger inputs.

Regardless of the optimality criterion, be it minimum total table size, minimum treewidth or mini-
mum number of fill-ins, optimal triangulation is still NP-hard. Due to this it is indeed possible that no
general algorithm for finding optimal triangulations running in polynomial time exists. However, we
have seen that the optimal search methods can exhibit good average case speed for denser graphs.

Among the poorest performing methods for finding triangulations of small table size were surely the
minimal methods, MCS-M and LB-Triang. It is clear that minimality of a triangulation does not equate
to small table size. These methods can, however, be applied for other tasks. For instance, Olesen and
Madsen (2002) discusses the usage of these methods for admitting a MPD.
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FUTURE WORK Page 57 of 69.

Work on Heuristics for A*

A few other attempts at improving optimal search have been made. We have been working on a heuristic
function we call three-way merge. This function essentially estimates the change in table size when
eliminating a node, and this estimate is then used to reorder the priority queue. The change in table size
is then associated with the set of nodes that have been eliminated, and stored. And whenever, a new step
is generated, we lookup the table size change associated with the largest subset of remaining nodes, not
adjacent to the set of eliminated nodes. That is, we merge the table size change of some other step, with
the table size of the step just generated, in order to get a lower bound on the final total table size.

We have been working on a complicated data structure for storing and making these kinds of queries.
And we have tested different ways in which the table size change from two different steps could be
merged. We believe that it is possible to get a lower bound on the final total table size for a partial
triangulation, using another partial triangulation of some of the remaining nodes. We did not succeed in
exploiting this to provide any significant speedup. And due to a lack of ressources this work was never
formalized, though we are fairly confident that it is possible to prove correctness.

11.1 Future Work

One possible avenue to pursue could be min-fill-LA(k) with dynamic look-aheads, as mentioned during
the discussion of our test results. By running several passes of min-fill-LA(k) with increasing look-
aheads and finally choosing the best solution, it might be possible to improve the accuracy of this heuris-
tic. This is similar to the idea of re-triangulation discussed in (Flores and Gamez, 2007), where several
different methods may be applied to the same graph, where the best solution among these is used.

Another open question is how to determine how difficult a certain graph is to triangulate. More
specifically, whether it is feasible to run a heuristic method on the graph and find a solution of acceptable
table size. As mentioned previously, sparse graphs are among the most challenging, so the density could,
perhaps, be used, among other properties, as a measure for difficulty. Still, our test data shows that min-
fill is able to produce optimal results for some sparse graphs. Obviously, one way to know for sure
whether min-fill is non-optimal on some graph is to run an exact method on it and compare the results.
Yet, as mentioned before, it is not always feasible to search for the optimal solution, even for relatively
small graphs.

Our work in chapter 7 suggests that research into searching in the space of triangulations might be
worth while. As the space of all elimination orders is much larger than the space of all triangulations,
as there are many elimination orders that yields the same triangulation. Furthermore, it is possible that
such a search space could be reduced to the space of minimal triangulations or, perhaps, even smaller.
Yet, compared to BFS and DFS presented in Ottosen and Vomlel (2010b) and improved here, research
in searching the space of all triangulations would likely require a whole new approach.



CHAPTER 12

Conclusion

We have shown that it is possible to improve the efficiency of optimal triangulation methods substan-
tially. This has been achieved by reducing the search space of elimination orders by the means of pivot
cliques and in advance pruning of redundant subproblems with coalescence prediction by transposition
in partial elimination orders. However, the optimal methods are still, in general, too computationally
demanding for use in larger problem sizes. Even in cases where the problem size is very small some
sparse graphs remain intractable, where dense graphs can be computed in a matter seconds.

Triangulation with respect to other optimality criteria, namely miniumum treewidth and minimum
fill-in, can also benefit from the improvements proposed in this report, since these optimizations exploit
general properties of elimination orders and triangulated graphs.

We have compared heuristic methods and deduced that the min-fill heuristic generally gives the best
results, which in many cases only slightly deviate from the optimal solution, making min-fill the most
reliable greedy heuristic we have experimented with. However, we can conclude that there are also cases
where min-fill gives results that are far from optimal. Consequently, the choice of a greedy heuristic over
an optimal method can potentially render inference in the triangulated graph intractable.
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APPENDIX A

Best First Search with Decomposition, Coalescence Prediction and Pivot

The pseudo code for a combination of all the improvements to algorithm 11 can be found in algorithm
20.

Algorithm 20 Best First Search with MPD, Oracle and Pivot
1: function BESTFIRSTSEARCH-MPD-PIVOT-ORACLE(G)
2: s =CREATESTEP()
3: Insert line 3-10 from algorithm 11
4: s.S =DECOMPOSE(s.G[s.R],s.C,s.R) . Attempt initial decomposition
5: s.X = s.R . Set initial expansion set
6: ENQUEUE(Q,s)
7: while Q 6= /0 do
8: n =DEQUEUE(Q)
9: Insert line 14-16 from algorithm 11

10: Ex = n.R\n.X
11: if n.S = n.R then
12: X = n.X\SELECTPIVOT(Gn,Rn,Cn) . Reduce expansion set X with pivot
13: else
14: X = n.X ∩n.S . Reduce expansion set X with decompostion
15: end if
16: for all v ∈ X do
17: Ex = Ex∪{v}
18: m =CREATESTEP()
19: Insert line 18- 32 from algorithm 11
20: m.X = m.R\ (Ex \ f a(v,m.G[m.R])) . Reduce expansion set by coalesce prediction
21: if n.S∩m.R = /0 then . Find decompositions
22: m.S =DECOMPOSE(m.G[m.R],m.C,m.R)
23: else
24: F = E(m.G)\E(n.G) . The set of fill-ins added.
25: I = {v,u | {u,v} ∈ F} . The set of nodes with new fill-ins.
26: NC = C ∈ m.C |C∩ I 6= /0 . Find new cliques
27: m.S =DECOMPOSE(m.G[m.R],NC,n.S∩m.R)
28: end if
29: ENQUEUE(Q,m)
30: end for
31: end while
32: end function
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APPENDIX B

Comparison of Pivot Selection Strategies

Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions Solutions found
First 0.42 8763 4770 1270 9704
MaxFill 0.63 6637 5438 1321 9342
MinFill 0.57 9156 4393 1259 9917
MaxSizeMinFill 0.51 6539 4794 1311 9847
MaxSize 0.46 6578 5057 1314 9633
Middle 0.44 7807 5086 1313 9944
MaxSizeMaxWidth 0.45 6594 5223 1321 9579
Last 0.48 7715 4616 1283 10152
MaxWidth 0.44 7638 5245 1321 9856
MinWidthMaxSize 0.37 7965 4149 1189 9035
MaxSizeMinWidth 0.45 6563 4938 1311 9699
MinWidth 0.38 8238 4170 1189 9290
MinFillSingle 0.64 7715 4616 1283 10152
MaxSizeMaxFill 0.49 6637 5438 1321 9342

Table B.1: Table of averages results of DFS with Pivot strategies on graphs of size 30 with high density
and only Pivot

Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions
MaxSizeMaxFill 0.49 2239 19111 1331
MinFill 0.61 7770 18211 1269
First 0.41 4822 18526 1280
ROT13 0.48 4288 19103 1323
MinWidthMaxSize 0.36 4178 17132 1199
MaxFill 0.61 2239 19111 1331
MaxSizeMinFill 0.51 2210 18941 1321
MaxSizeMinWidth 0.48 2208 18941 1321
MinFillSingle 0.63 5141 18658 1291
Last 0.48 5141 18658 1291
MinWidth 0.4 4516 17322 1199
Middle 0.45 4237 19102 1323
MaxWidth 0.45 3345 19326 1331
MaxSizeMaxWidth 0.47 2239 19111 1331
MaxSize 0.45 2226 18999 1324

Table B.2: Table of averages results of BFS with Pivot strategies on graphs of size 30 with high density
and only Pivot
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APPENDIX B. COMPARISON OF PIVOT SELECTION STRATEGIES Page 61 of 69.

Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions Solutions found
MaxWidth 0.15 3808 1011 1321 2857
MinFillFamily 0.25 4889 897 1269 2411
MaxSizeMinFillFamily 0.21 4160 1031 1317 2589
MaxFill 0.3 2695 1013 1321 2471
Last 0.14 3263 811 1131 2319
MinSizeMaxFillFamily 0.14 2665 1016 1321 2651
DynamicWidthSize 0.22 3639 1072 1314 2916
ROT13 0.13 3804 939 1281 2464
MaxSizeMaxFill 0.15 2687 1013 1321 2471
Middle 0.16 3731 969 1292 2605
MaxSize 0.12 2720 1052 1314 2504
MinFill 0.3 4412 810 1161 2217
MaxSizeMinFill 0.16 2784 871 1298 2289
MaxSizeMinWidth 0.11 2769 935 1311 2368
MinWidthPrime 0.15 4336 807 1125 2309
MinWidthMaxSize 0.11 3610 755 1113 2098
MaxFillFamily 0.22 2797 1024 1321 2569
DynamicWidthSize4 0.28 2735 1017 1314 2347
MaxSizeMaxWidth 0.12 2677 1012 1321 2471
DynamicWidthSize3 0.22 2735 1017 1314 2347
DynamicWidthSize2 0.20 2735 1017 1314 2347
First 0.15 4794 981 1260 2541
MinWidth 0.12 4336 807 1125 2309

Table B.3: Table of averages results of DFS with Pivot strategies and Oracle on graphs of size 30 with
low density and with Oracle

Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions
MaxSizeMaxFill 0.53 2239 23655 1331
DynamicWidthSize4 0.55 2226 23529 1324
MinFill 0.57 7770 22539 1269
MinFillFamily 0.59 7770 22539 1269
MaxWidth 0.46 3345 23655 1331
MaxSize 0.43 2226 23529 1324
Last 0.48 5141 22935 1291
MinFillSingle 0.68 5141 22935 1291
Middle 0.47 4237 23511 1323
MaxSizeMaxWidth 0.48 2239 23655 1331
First 0.41 4822 22738 1280
MinSizeMaxFillFamily 0.49 2239 23655 1331
MaxSizeMinFill 0.5 2210 23475 1321
DynamicWidthSize 0.64 7238 24503 1324
MaxFillFamily 0.64 2239 23655 1331
MaxFill 0.64 2239 23655 1331
DynamicWidthSize2 0.58 2226 23529 1324
MaxSizeMinWidth 0.45 2208 23475 1321
MaxSizeMinFillFamily 0.56 8657 24986 1331
MinWidthPrime 0.41 4516 21279 1199
ROT13 0.46 4288 23511 1323
MinWidth 0.36 4516 21279 1199
DynamicWidthSize3 0.58 2226 23529 1324

Table B.4: Table of averages results of BFS with Pivot strategies and Oracle on graphs of size 30 with
high density and with Oracle
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Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions Solutions found
First 94.57 2957248 2813448 338399 68831
MaxFill 101.97 1888455 3140642 350469 66397
MinFill 92.94 2398420 2288882 267629 71632
MaxSizeMinFill 80.95 1683323 2835783 325154 64178
MaxSize 77.91 1693957 2943829 333001 66835
Middle 93.27 2613762 3069941 357595 68616
MaxSizeMaxWidth 79.21 1747602 2980308 339450 66647
MinWidthMaxSize 75.93 2279821 2233112 262416 67935
MaxSizeMinWidth 77.18 1666085 2905895 328277 67063
MinWidth 76.34 2298139 2236562 262222 69329
MinFillSingle 110.76 2601253 3029122 348499 69228
MaxSizeMaxFill 84.2 1696910 3040431 338929 66239
MaxWidth 93.54 2481254 3089313 358543 68992
Last 92.4 2601253 3029122 348499 69228

Table B.5: Table of averages results of DFS with Pivot strategies on graphs of size 30 with low density
and only Pivot

Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions
ROT13 88.72 2450327 3050831 323020
MinWidthMaxSize 73.94 2328952 2341986 248767
MaxFill 95.89 1527726 3152026 319786
MaxSizeMinFill 80.24 1533012 2953280 313484
MaxSizeMinWidth 76.51 1483241 3021471 314999
MinFillSingle 102.69 2254358 3023492 314973
Last 85.65 2254358 3023492 314973
MinWidth 74.29 2368462 2347384 248752
MaxWidth 86.27 2161485 3077945 322404
MaxSizeMaxWidth 76.84 1496465 3050171 318068
MaxSize 76.06 1480475 3040127 316074
Middle 87.52 2373255 3049457 322990

Table B.6: Table of averages results of the BFS with Pivot strategies on graphs of size 30 with middle
density and only Pivot
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Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions Solutions found
MinFillFamily 43.47 1535826 298641 291536 14804
MaxSizeMinFillFamily 32.54 1415472 293823 295697 13844
MaxFill 43.84 958145 369953 349221 13732
Last 28.97 1230196 319646 311527 13802
MinSizeMaxFillFamily 27.26 927099 344429 335213 13863
DynamicWidthSize 36.42 928696 334500 328066 15839
ROT13 34.77 1498604 354793 344650 14913
MaxSizeMaxFill 28.76 889857 349552 335253 13901
Middle 33.97 1445284 367713 348704 15452
MaxSize 25.19 937181 342310 331212 14549
MinFill 37.79 1155463 233561 221309 13192
MaxSizeMinFill 28.06 916003 301391 312296 11399
MaxSizeMinWidth 24.25 898586 323622 321431 13748
MinWidthPrime 26.9 1150589 235413 222949 13814
MinWidthMaxSize 25.04 1075895 225830 212019 12858
MaxFillFamily 38.71 1006362 356547 347995 14138
DynamicWidthSize4 35.49 906967 332874 328054 13920
MaxSizeMaxWidth 25.0 916717 338395 331770 14407
DynamicWidthSize3 35.43 906967 332874 328054 13920
DynamicWidthSize2 35.44 907662 332919 328117 14048
First 35.04 1563824 329001 305828 15182
MinWidth 26.85 1150273 235411 222913 13814
MaxWidth 36.48 1471726 385134 354372 16339

Table B.7: Table of averages results of DFS with Pivot strategies and Oracle on graphs of size 30 with
low density and with Oracle

Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions
MaxSizeMaxFill 82.17 1434788 5258381 316261
DynamicWidthSize4 89.04 1474217 5167256 313583
MinFill 92.16 2528025 4264121 256110
MinFillFamily 92.33 2528025 4264121 256110
MaxWidth 88.09 2161500 5369108 322408
MaxSize 77.89 1480491 5251751 316078
Last 87.57 2254371 5303421 314976
MinFillSingle 104.59 2254371 5303421 314976
Middle 89.64 2373273 5357469 322994
MaxSizeMaxWidth 78.89 1474858 5213151 315982
First 90.85 2849198 5061711 307197
MinSizeMaxFillFamily 81.43 1465140 5320756 317668
MaxSizeMinFill 82.15 1498407 5097970 311281
DynamicWidthSize 83.08 1548101 5159230 313611
MaxFillFamily 97.68 1527741 5414066 319790
MaxFill 97.58 1527741 5414066 319790
DynamicWidthSize2 83.97 1477153 5167840 313644
MaxSizeMinWidth 78.14 1475912 5139159 312261
MaxSizeMinFillFamily 85.25 2701557 4676234 292346
MinWidthPrime 75.42 2369538 4157237 248803
ROT13 90.61 2450344 5373440 323024
MinWidth 75.56 2368470 4156983 248754
DynamicWidthSize3 84.14 1474217 5167256 313583

Table B.8: Table of averages results of BFS with Pivot strategies and Oracle on graphs of size 30 with
middle density and with Oracle
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Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions Solutions found
First 5317.96 71585305 52048917 8443839 3535
MaxFill 1026.09 38719360 58919426 9013814 1177
MinFill 1311.46 74381155 55039812 8401765 2607
MaxSizeMinFill 768.4 34178861 46055260 7747145 1061
MaxSize 743.38 34468282 48784492 7998432 1119
Middle 1180.78 66873153 64913829 10143968 2672
MaxSizeMaxWidth 781.7 35200519 51577953 8332463 1140
MinWidthMaxSize 1107.4 68944771 50852162 7841613 2358
MaxSizeMinWidth 736.8 34349340 47164548 7870728 1140
MinWidth 1132.76 70577778 52828735 8132579 2669
MinFillSingle 1336.0 66378895 63147347 9850241 2691
MaxSizeMaxFill 821.25 34532424 52025785 8286244 1153
MaxWidth 5041.87 50459925 61864165 9664030 2939
Last 1165.78 66381948 63148537 9850385 2693

Table B.9: Table of averages results of DFS with Pivot strategies on graphs of size 30 with low density
and only Pivot

Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions
MaxFill 861.44 17949422 33506690 4481155
MaxSizeMinFill 785.95 18769934 29705853 4381607
MaxSizeMinWidth 779.95 18636014 30235576 4421025
MinFillSingle 1102.75 31019423 34883926 4762073
MaxSizeMaxFill 776.05 17405192 31444146 4403790
MinFill 995.24 35983582 29727960 4034372
First 898.75 35849080 28874633 4181233
ROT13 1091.42 36767835 34301991 4821484
Last 4939.43 31019688 34884237 4762074
MinWidth 881.27 34762218 28888966 3959451
MaxWidth 913.04 23170166 34060084 4657757
MaxSizeMaxWidth 4767.58 17807001 31213382 4423257
MaxSize 743.72 18277437 30678698 4415874
Middle 5020.19 31364159 34913545 4824088

Table B.10: Table of averages results of BFS with Pivot strategies on graphs of size 30 with low density
and only Pivot
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Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions Solutions found
MaxWidth 394.52 24709305 8074570 9129468 1796
MinFillFamily 8924.39 38520926 9289215 9457339 1762
MaxSizeMinFillFamily 4678.44 30407646 7224730 7755949 1697
MaxFill 443.66 16726826 7555264 8747818 274
Last 398.78 28009470 7571393 8519474 1122
MinSizeMaxFillFamily 296.74 16366255 6432613 8112495 282
DynamicWidthSize 272.4 15644756 5948497 7608502 264
ROT13 494.37 35786528 8658140 9160352 1517
MaxSizeMaxFill 312.75 15641255 6529133 8046354 257
Middle 448.07 31300573 8694720 9522782 1436
MaxSize 272.48 16465445 6202197 7821182 298
MinFill 561.83 32250205 7252935 7863668 1270
MaxSizeMinFill 299.5 15957379 5636776 7456938 264
MaxSizeMinWidth 265.96 15889689 5800496 7538846 274
MinWidthPrime 438.34 31831357 7318109 7787925 1328
MinWidthMaxSize 397.92 28750556 6443310 6899062 1033
MaxFillFamily 4690.84 19522223 7357486 8768935 912
DynamicWidthSize4 273.11 15644756 5948497 7608502 283
MaxSizeMaxWidth 272.51 15866785 6293000 7963155 307
DynamicWidthSize3 274.06 15646979 5948631 7608732 690
DynamicWidthSize2 307.61 18397678 6258390 7718068 1847
First 403.47 29963338 6794708 7398879 1643
MinWidth 410.65 29614279 6810762 7198398 1209

Table B.11: Table of averages results of DFS with Pivot strategies and Oracle on graphs of size 30 with
low density and with Oracle

Running time in sec
strategy time Pruned by upperbound Coalescings Node expansions
MaxSizeMaxFill 797.48 17598069 77035091 4317980
DynamicWidthSize4 789.75 18401762 76958686 4352422
MinFill 1061.42 35983598 72120689 4034392
MinFillFamily 1063.41 35983598 72120689 4034392
MaxWidth 957.23 23170174 86441546 4657779
MaxSize 794.24 18277455 78814503 4415896
Last 4959.54 31019703 89911013 4762096
MinFillSingle 1161.49 31019703 89911013 4762096
Middle 9164.69 31364177 89107466 4824110
MaxSizeMaxWidth 780.65 17916215 76991759 4330038
First 943.0 35849098 76006461 4181255
MinSizeMaxFillFamily 821.12 17762273 80597637 4448849
MaxSizeMinFill 801.37 18708215 75350459 4293245
DynamicWidthSize 4950.06 18401749 76958654 4352422
MaxFillFamily 937.3 17949430 83716559 4481177
MaxFill 933.66 17949430 83716559 4481177
DynamicWidthSize2 810.48 19942127 77351564 4384465
MaxSizeMinWidth 784.5 18628869 76102389 4324477
MaxSizeMinFillFamily 888.96 34284858 70497662 3976047
MinWidthPrime 999.23 36735835 74517939 4147813
ROT13 1131.1 36767852 88789196 4821506
MinWidth 916.45 34762234 71517770 3959470
DynamicWidthSize3 790.0 18405468 76960783 4352524

Table B.12: Table of averages results of BFS with Pivot strategies and Oracle on graphs of size 30 with
low density and with Oracle
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Running time in sec
strategy time
MaxSize 27.12
MinFill 26.80
MinFillSingle 39.25
MaxSizeMaxFill 28.77
MaxSizeMinFill 28.94
MaxSizeMinWidth 27.02
MaxSizeMaxWidth 27.07
MaxFill 41.62
MaxWidth 27.47
MinWidth 11.26
MinWidthPrime 11.25
MinWidthMaxSize 7.09
Last 26.20
First 9.95
Middle 27.25
DynamicWidthSize 30.20
DynamicWidthSize2 27.11
DynamicWidthSize3 27.12
DynamicWidthSize4 27.13
MaxFillFamily 35.11
MinFillFamily 20.93
MinSizeMaxFillFamily 27.88
MaxSizeMinFillFamily 23.321
ROT13 27.437

Table B.13: Table of averages results of BFS with Pivot strategies and Oracle on graphs of size 60 with
high density and with Oracle



APPENDIX C

Implementation

This appendix covers the implementation of the algorithms described in previous chapters.

C.1 Overview

All programming has been done in C++. To obtain maximal efficiency C++ templates are used to
parameterize the input graphs and various methods with a compile-time defined static size. This size is
set to the number of nodes in the input graph.

The program itself is a simple command-line based application, which outputs results to the terminal.

Graph Representation

Graphs are represented by an adjacency n×n matrix, where n is the number of nodes in the graph. For
example the complete graph G = ({a,b,c},{ab,ac,bc}) shown in figure C.1 has the form in equation
C.1.

a

b c

Figure C.1: The graph G

 0 1 1
1 0 1
1 1 0

 (C.1)

Since the graph is undirected the matrix is symmetrical across the diagonal, so if ∀(i, j) : (i, j) = ( j, i)
does not hold for all pairs, the graph is not consistent. The diagonal contains zeros, since we do not allow
cycles in a graph.

With this representation it is easy to compute the neighbors of a given node. E.g. The first row in the
matrix corresponds to the neighbor-set of node a, which is nb(a) = [0 1 1] = {b,c}, since the last two
indices correspond to nodes b and c, respectively.

The storage requirements for this representation are low, since the matrix is represented by an array
of n bitsets (or rather, bitfields), which each contain n bits.

Moreover, it is easy to perform many set and graph-related operations on this data structure effi-
ciently, since it is merely a low-level abstraction of bits.

Encapsulation of Triangulation Methods

In order to have the ability to plug-in an unrestricted number of algorithm implementations into the
program an abstract base class named TriangulationStrategy is introduced. Every implementation
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inherits from this class and overloads the virtual method run(), which invokes the concrete algorithm
and returns the output graph.

In addition, the base class contains methods for counting statistics and reporting running progress.

Representing Subgraphs and Eliminated Nodes

Remaining nodes in a graph are represented by a bitfield, which contains nodes [0−n] in the same order
as the graph. Initially this bitfield contains only 1s, which essentially means that no nodes have been
eliminated yet. Every time a node is eliminated from the graph, the bit position corresponding to the
node is set to 0. E.g. the bitfield [1 1 0] indicates that node c has been eliminated from the graph shown
in figure C.1.

Subgraphs are easy to represent using this approach. Often the subgraph induced from eliminating
a given node is needed. For instance, when the number of fill-ins or maximal cliques must be computed
with respect to a set of already eliminated nodes. So, eliminated nodes are omitted by applying the
bitfield of remaining nodes as an AND-mask on the neighbor-set of a node.

E.g. Let Ge = [1 1 0] be the bitfield where node c is eliminated and nb(a) = [0 1 1] is the neighbor-set
of a from earlier, then the operation Ge∧nb(a) = [0 1 0] yields the non-eliminated neighbors of node a,
namely {b}.
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Anne Berry, Romain Pogorelcnik, and Geneviéve Simonet. An introduction to clique minimal
separator decomposition. Algorithms, 2010.

Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected graph. Commun.
ACM, 16:575–577, September 1973. ISSN 0001-0782.

F. Cazals and C. Karande. Note: A note on the problem of reporting maximal cliques. Theor. Comput.
Sci., 407:564–568, November 2008. ISSN 0304-3975.

L. S. Chandran, L. Ibarra, F. Ruskey, and J. Sawada. Generating and characterizing the perfect
elimination orderings of a chordal graph. Theoretical Computer Science, 307(2):303 – 317, 2003.
ISSN 0304-3975. doi: DOI:10.1016/S0304-3975(03)00221-4.

Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 1
edition, April 2009. ISBN 978-0521884389.
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