Petri Nets with Discrete Variables

Jonas Finnemann Jensen, Thomas Nielsen, Lars Kærlund Østergaard

Department of Computer Science, Aalborg University, Denmark

Abstract. Petri nets are a well-known graphical language for conceptual modelling. We propose a new model called Petri nets with discrete variables (PNDVs) that permits additional modelling convenience over classical Petri nets. We show that PNDVs are Turing complete and give a limited subset with the same expressive power as Petri nets. Moreover, we demonstrate that PNDVs can simulate bounded discrete timed-arc Petri nets. We apply heuristic algorithms for reachability analysis of PNDVs with a tool, we have developed called PeTe. Finally, we demonstrate the advantages of these algorithms with experimental results from using this tool.

1 Introduction

Model checking is a widely used technique for automatic verification of systems. This technique is used to verify the correctness of systems. Model-checking has also been applied to concurrent systems, where a widely-used model called Petri nets is used for the analysis and verification of these.

Petri nets (PNs) is a graphical language originally proposed by C.A. Petri in [16] for conceptual modelling of the flow of information in systems. Since then, there has been developed a number of classes of PNs to accommodate an increased need for descriptive power. Among these are timed-arc Petri nets (TAPNs) [9] that enable the specification and verification of real-time systems, as well as colored Petri nets (CPNs) [11], a versatile high-level type of PN which can be used for the specification, implementation and simulation of complex systems.

PNs can become complicated when expressing large systems, this is due to the limited set of basic constructs available in the language. For instance, some systems require additional constraints in order to ensure that the model is bounded, i.e. a bounded PN. A well-known modelling trick to ensure boundedness is using complementary-place transformation [3]. In conceptual modelling this construction may be undesirable due to the introduction of redundant information and artificial elements into the model, requiring users of the model to recognize and ignore redundancy. Moreover, the model can be harder to visualize, since simplicity is sacrificed in order to ensure boundedness.

We propose a new model called Petri nets with discrete variables (PNDVs) that primarily seeks to add modelling convenience and compactness to PNs, while at the same time ensuring that verification is possible. This model is a PN extended with a set of finite global integer variables, used in pre-conditions.
and post-assignments on transitions. This provides a compact way of exploiting common encoding tricks used in PNs.

With the PNDV model, boundedness can be expressed in a more compact way with guards on transitions using discrete variables, hence redundant places are not required. In addition, inhibitor arcs can be simulated without the need for a new type of arc, nor the complementary place construction, as this can be expressed with guards on transitions in PNDVs. Besides these modelling capabilities it is straightforward to model systems which alter the state of variables through sequences of transitions.

Moreover, we present a reduction from bounded discrete timed arc Petri nets (DTAPNs) to PNDVs that demonstrates how PNDVs can be used for deciding marking reachability for DTAPNs.

Finally, we have developed a tool called PeTe (PeTri net Engine) for modelling and verification of PNDVs and PNs. This tool will be used to conduct reachability experiments with various heuristics. In addition, PeTe implements an algorithm for translating bounded DTAPNs into PNDVs. Experimental results show that the heuristics we have developed for reachability analysis are significantly faster than naive and randomized depth first search.

1.1 Related Work

The addition of variables in PNs has been done before with colored Petri nets (CPNs) that allow the execution of arbitrary program code when firing transitions, e.g. CPN Tools [17,11], a tool for simulating and analyzing CPNs, supports the functional programming language Standard ML.

The Petri net model we propose is different from CPNs, i.e. in PNDVs tokens are not colored (do not carry data), data structures are global and finite (and only permit integer variables), the guards imposed on transitions are restricted and do not allow for execution of code. It is well-known that the verification problems, such as reachability, coverability and boundedness, concerning CPNs are undecidable. Hence, model checking can be impossible for unbounded and even bounded CPNs [13]. PNDVs provides modelling convenience while guaranteeing decidability of the aforementioned model-checking problems for bounded nets. PNDVs have the same modelling power as PNs with inhibitor arcs. As we shall see later, we introduce p-free PNDVs, which correspond to ordinary PNs, but still with many of the modelling capabilities available.

We give a reduction from bounded DTAPNs to PNDVs for reachability analysis. In general reachability for DTAPNs is undecidable [18], however Escrig showed that finite timed reachability for unbounded DTAPNs is decidable by only simulating time up to some instant in [8]. Our approach works for bounded DTAPNs and uses a technique where tokens in each place are aged up to a maximal value. Then for delays larger than this value, tokens are no longer aged. This is similar to a technique used by Escrig in [18], where state graphs are used for reachability analysis on bounded TAPNs (real-valued time).

Outline: The next section will cover preliminaries for the rest of this paper. In Section 3 we introduce PNDVs. In Section 4 we introduce a subset of PNDVs
with the same expressive power as ordinary PNs. Section 5 describes a reduction from bounded DTAPNs to PNDVs for deciding reachability. In Section 6 algorithms for reachability analysis and experimental results are presented. Finally, in Section 7 we give conclusions and ideas for future work.

2 Preliminaries

Before we cover modelling and verification of PNDVs in more detail, we introduce the required terminology and definitions for PNs and the new PNDV model.

Let \(\mathbb{N} \) denote the set of natural numbers including zero and \(\mathbb{Z} \) the set of integers.

Definition 1. (Petri net with inhibitor arcs) A Petri net with inhibitor arcs is a quadruple \(N = (P,T,F,\text{Inhb}) \), where

- \(P \) is a finite set of places,
- \(T \) is a finite set of transitions, where \(P \cap T = \emptyset \),
- \(F : (P \times T) \cup (T \times P) \to \mathbb{N} \) is the flow function,
- \(\text{Inhb} \subseteq P \times T \) is the set of inhibitor arcs, s.t. \((p,t) \in \text{Inhb}\) implies \(F(p,t) = 0 \).

Let \(N = (P,T,F,\text{Inhb}) \) be a PN. A marking is a mapping \(M : P \to \mathbb{N} \) that assigns tokens to places. The set \(\mathcal{M}(N) \) denotes the infinite set of all markings on \(N \). If \(\text{Inhb} = \emptyset \) then \(N \) is said to be an ordinary PN, for convenience we will write this as a triple \(N = (P,T,F) \). A marked PN is a pair \((N,M_0)\), where \(M_0 \) is an initial marking on \(N \). The *preset* \(\cdot y \) for a place or transition \(y \) is defined as \(\cdot y = \{z \in P \cup T \mid F(z,y) > 0\} \), likewise, the *postset* is \(y^* = \{z \in P \cup T \mid F(y,z) > 0\} \). We denote the inhibitor places for a transition \(t \) as \(\text{Inhb}(t) = \{p \mid (p,t) \in \text{Inhb}\} \).

Given marking \(M \), we say a transition \(t \) is *enabled* if it holds that

\[
\forall p \in \cdot t : F(p,t) \leq M(p) \land \forall p \in \text{Inhb}(t) : M(p) = 0
\]

A transition \(t \) can *fire* if it is enabled, which leads to a new marking \(M' \), where \(M'(p) = M(p) - F(p,t) + F(t,p) \) for every place \(p \in P \). We write \(M \xrightarrow{t} M' \) if from the marking \(M \) by firing \(t \) we reach the marking \(M' \). We write \(M \to M' \) if \(M \xrightarrow{t} M' \) for some \(t \in T \). The reflexive transitive closure of \(\to \) is \(\rightarrow \). Let \(\mathcal{R}(M_0) = \{M' \mid M_0 \rightarrow M'\} \) denote the set of all reachable markings from initial marking \(M_0 \). A marking \(M' \) is said to be *reachable* from the initial marking \(M_0 \) if \(M' \in \mathcal{R}(M_0) \).

We define a logic for reachability of PNs with meta-variables and syntactic categories for expressions \(e_x \in \text{Expr}_x \) and conditions \(c_x \in \text{Cond}_x \). The logic is defined as follows

\[
e_x ::= z \mid p \mid e_x \oplus e_x, \quad \text{where } z \in \mathbb{Z}, \ p \in P, \ \oplus \in \{+,-,*\} \tag{1}
\]

\[
c_x ::= e_x \bowtie e_x \mid c_x \lor e_x \mid c_x \land e_x \mid \neg c_x, \quad \text{where } \bowtie \in \{=,<,\leq,>,\geq,\neq\} \tag{2}
\]

A marking \(M \) satisfies a condition \(c_x \), denoted \(M \models c_x \), if by replacing \(p \) in \(c_x \) with \(M(p) \) for all \(p \in P \) the formula evaluates to true. We say that a query
$c_x \in \text{Cond}_x$ is \textit{satisfiable} if there exists a reachable marking $M \in \mathcal{R}(M_0)$ s.t. $M \models c_x$.

PNs are illustrated as usual, where circles are places, tokens are black dots on places, transitions are black rectangles, input and output arcs are drawn as arrows, while inhibitor arcs are straight lines with a small circle at the end. An inscription on an arc denotes that its weight is greater than one. Figure 1 illustrates a PN simulating a computer scientist. A token in the place \textit{inactive} means that the computer scientist is inactive, while a token in places \textit{coffee machine} and \textit{pizza} indicates that there is coffee and pizza available. The inhibitor arc between \textit{pizza} and \textit{grab coffee} prevents the computer scientist from grabbing a cup of coffee when pizza is available; leaving \textit{eat pizza} the only transition enabled, when inactive. Once the pizza has been consumed, the transition \textit{grab coffee} can be fired, allowing the computer scientist to work and output a paper.

![Figure 1: A Petri net model of a computer scientist](image)

3 \hspace{1em} \textbf{Petri Nets with Discrete Variables}

A Petri net with discrete variables (PNDV) is a PN extended with a finite set of integer variables, $X = \{x_1, \ldots, x_m\}$, and pre- and post-conditions on transitions. We define the meta-variables and syntactic categories for expressions $e \in \text{Expr}$, conditions $c \in \text{Cond}$ and assignments $a \in \text{Assign}$.

The language describing expressions and conditions over X and places P is

\begin{align}
 e & ::= x \mid z \mid p \mid e \oplus e, \quad \text{where } x \in X, \; z \in \mathbb{Z}, \; p \in P, \; \oplus \in \{+, -, \ast\} \tag{3} \\
 c & ::= e \otimes e \mid e \lor e \mid e \land e \mid \neg c, \quad \text{where } \otimes \in \{=, \leq, >, \geq, \neq\} \tag{4} \\
 a & ::= (x_1 := e_1, x_2 := e_2, \ldots, x_m := e_m), \quad \text{where } e_1, \ldots, e_m \in \text{Expr} \tag{5}
\end{align}

For convenience we may choose to write only the variables that are changed in an assignment, e.g. $a = (x_i := e_i, x_j := e_j)$ if only x_i, x_j are changed.
Definition 2. (Petri net with discrete variables) A PNDV is a 7-tuple $N = (P, T, X, \text{Range}, F, \text{Pre}, \text{Post})$, where P, T and F are as defined for PNs and

- $X = \{x_1, \ldots, x_m\}$ is a finite set of integer variables,
- $\text{Range} : X \to \mathbb{N} \setminus \{0\}$ assigns the maximum values for variables in X,
- $\text{Pre} : T \to \text{Cond}$ is a mapping from transitions to pre-conditions, and
- $\text{Post} : T \to \text{Assign}$ maps transitions to post-assignments.

Let $N = (P, T, X, \text{Range}, F, \text{Pre}, \text{Post})$ be a PNDV. A valuation is a function $V : X \to \mathbb{N}$, where $V(x) \leq \text{Range}(x)$ for all $x \in X$. All valuations on N are denoted $\mathcal{V}(N)$. A state on N is a pair $S = (M, V) \in \mathcal{M}(N) \times \mathcal{V}(N)$, where M is a marking and V is a valuation. The set of all states on N is defined as $S(N) = \mathcal{M}(N) \times \mathcal{V}(N)$. A marked PNDV is a pair (N, S_0), where $S_0 = (M_0, V_0)$ is the initial state on N and $V_0(x) = 0$ for all $x \in X$. We say that a state $S = (M, V)$ satisfies a pre-condition $c \in \text{Cond}$, denoted $S \models c$, if by replacing the places and variables in c with the corresponding values from M and V, the formula evaluates to true. Given a state S, an expression $e \in \text{Expr}$ evaluates to a new value $V \in \mathbb{Z}$, denoted $V = \text{eval}(e, S)$. An assignment $a = (x_1 \leftarrow e_1, \ldots, x_m \leftarrow e_m) \in \text{Assign}$ evaluates to a new valuation $V' = \text{eval}(a, S)$, where for all $i : 1 \leq i \leq m$

$$\text{eval}(a, S)(x_i) = \text{eval}(e_i, S) \mod (\text{Range}(x_i) + 1).$$

(6)

Note that $\text{Range}(x_i)$ is the largest value x_i can have. Let $S = (M, V)$ be a state on N and $t \in T$ a transition, we say that t is enabled in S if it holds that

$$\forall p \in \bullet t : F(p, t) \leq M(p) \land S \models \text{Pre}(t)$$

(7)

If t is enabled in S, it can fire, which leads to a new state S', such that the resulting state obtained by firing t is $S' = (M', \text{eval}(\text{Post}(t), S))$, where $M'(p) = M(p) - F(p, t) + F(t, p)$ for every place $p \in P$. The transition relation of PNDVs is similar to that of PNs. We write $S \xrightarrow{t} S'$ if by firing t from state S we reach state S'. We write $S \rightarrow S'$ if $S \xrightarrow{t} S'$ for some $t \in T$. The reflexive transitive closure of \rightarrow is $\xrightarrow{*}$. Let $\mathcal{R}(S_0) = \{S' \mid S_0 \xrightarrow{*} S'\}$ denote the set of all reachable states from the initial state S_0. A state S' is said to be reachable from the initial state S_0 if $S' \in \mathcal{R}(S_0)$.

Similar to PNs, when querying reachability on PNDVs we use the Cond language. We say that a query $c \in \text{Cond}$ is satisfiable if there exists a reachable state $S \in \mathcal{R}(S_0)$ s.t. $S \models c$.

5
3.1 Producer-Consumer Example

Now we shall see a variant of a producer-consumer (PC) system modelled with a PNDV. A PC system usually contains at least one producer process and a consumer process. The producer delivers objects to the consumer. To avoid overwhelming the consumer, objects are placed into a bounded buffer. A variation of a PC system is shown in Figure 2 with an extra producer, where pre- and post-conditions are shown as labels immediately next to transitions prefixed with \textit{pre:} and \textit{post:}, respectively. The consumer receives objects from two producers taking turns to add objects, i.e. tokens, to the buffer. The variable B indicates which producer is active. Since there are two producers, $B = 0$ or $B = 1$, i.e. $\text{Range}(B) = 1$. To ensure boundedness, the buffer place can hold a maximum of two tokens. For a producer to output a token to the buffer, the buffer place must contain less than two tokens and B must have the value corresponding to its pre-condition. When take is fired the active producer is swapped (recall that the value of B wraps around when overflow happens).

![Diagram of a PNDV model of a producer-consumer system](image)

Fig. 2: A PNDV model of a producer-consumer system

3.2 Expressiveness of the PNDV Model

Here we will discuss the expressiveness of PNDVs. Recall that the language defined in Section 3 allows us to construct conditions that include places. The motivation for enabling these kinds of conditions is a convenient way of testing for zero, similar to the way inhibitor arcs work. However, PNs with inhibitor arcs are Turing complete [15], consequently reachability, coverability and boundedness are undecidable.

\textbf{Theorem 1.} PNDVs have full Turing power.

\textit{Proof.} We can reduce an PN with inhibitor arcs $N = (P, T, F, \text{Inhb})$ into a PNDV $N' = (P, T, \emptyset, \text{Range}, F, \text{Pre, Post})$, where $\text{Pre}(t) = \{ \bigwedge_{p \in \text{Inhb}(t)} p = 0 \}$ for all $t \in T$. Clearly, the labelled transition systems of N and N' are isomorphic, since the pre-condition for a transition t is only satisfied if every place $p \in \text{Inhb}(t)$ is empty. Thus, PNDVs have full Turing power, since they can simulate PNs with inhibitor arcs. \hfill \Box
4 P-Free PNDV

We introduce a subclass of PNDVs with computational power equivalent to that of a PN. We call this subclass p-free, since places cannot be referenced in conditions and assignments. We define p-free expressions Expr_p as the subset of expressions Expr where places $p \in P$ do not occur. Similarly, we define p-free conditions $\text{Cond}_p \subset \text{Cond}$ and p-free assignments $\text{Assign}_p \subset \text{Assign}$ as the respective subsets where p does not occur.

Definition 3. A PNDV $N = (P, T, X, \text{Range}, F, \text{Pre}, \text{Post})$ is p-free if $\text{Pre}(t) \in \text{Cond}_p$ and $\text{Post}(t) \in \text{Assign}_p$ for all $t \in T$.

Since a p-free condition $c_p \in \text{Cond}_p$ cannot reference any places, it can be evaluated given only a valuation V. Likewise, a p-free assignment $a_p \in \text{Assign}_p$ can be evaluated given a valuation V, denoted $V' = \text{eval}(a_p, V)$, defined as in Equation 6 with $\text{eval}(e_i, V)$, instead of $\text{eval}(e_i, S)$.

A p-free PNDV $N = (P, T, X, \text{Range}, F, \text{Pre}, \text{Post})$ can be translated into a PN $N' = (P', T', F')$ by creating new bounded places to simulate the variables. This is done by creating places p_x and complement places $\overline{p_x}$ for each variable $x \in X$. The number of tokens in place p_x is the value of x and place $\overline{p_x}$ bounds the place s.t. $p_x + \overline{p_x} = \text{Range}(x)$. A transition t_V is introduced in N' for each valuation V satisfying $\text{Pre}(t)$ for every transition $t \in T$.

![Diagram](image)

Fig. 3: A reduction from p-free PNDV to PN, where $V' = \text{eval}(\text{Post}(t), V)$

Figure 3 shows how two places are created for each variable in the p-free PNDV and how these are connected to a transition t_V, which the translated net may have exponentially many of. The pseudo code for this translation is listed in Algorithm 1.

Remark 1. Given a p-free PNDV $N = (P, T, X, \text{Range}, F, \text{Pre}, \text{Post})$ the resulting PN $N' = \text{p-free-PNDV-to-PN}(N)$, from translation using Algorithm 1, can be exponential in the size of N. Algorithm 1 creates $|P| + 2 \cdot |X|$ places, but the number of transitions is bounded by $O(|T| \cdot \prod_{x \in X} \text{Range}(x))$.

7
Algorithm 1 Conversion from p-free PNDV to PN

1: function p-free-PNDV-to-PN(N)
2: (P, T, X, Range, F, Pre, Post) = N
3: \(P' = P \cup \{p_x, p'_x \mid x \in X\}\)
4: \(T' = \emptyset\)
5: for all \(V \in \mathcal{V}(N)\) do \(\triangleright\) Consider all valuations
6: for all \(t \in T\) do
7: if \(V |\ Pre(t)\) then
8: \(T' = T' \cup \{t_V\}\) \(\triangleright\) Connect to same places as \(t\)
9: \(F'(p_x, t_V) = F(p, t)\)
10: \(F'(t_V, p) = F(t, p)\)
11: end for
12: end for
13: \(V' = \text{eval}(\text{Post}(t), V)\)
14: for all \(x \in X\) do \(\triangleright\) Depend on the assumed valuation
15: \(F'(p_x, t_V) = V(x)\)
16: \(F'(p'_x, t_V) = \text{Range}(x) - V(x)\)
17: \(F'(t_V, p_x) = V'(x)\) \(\triangleright\) Output the resulting valuation
18: \(F'(t_V, p'_x) = \text{Range}(x) - V'(x)\)
19: end for
20: end if
21: end for
22: return \((P', T', F')\)
23: end function

Definition 4. Let \(N_1 = (P_1, T_1, X_1, \text{Range}_1, F_1, \text{Pre}_1, \text{Post}_1)\) be a p-free PNDV and \(N_2 = (P_2, T_2, F_2) = \text{p-free-PNDV-to-PN}(N_1)\) be the PN translation of \(N_1\) using Algorithm 1. Let \(S_1 = (M_1, V_1)\) on \(N_1\) and marking \(M_2\) on \(N_2\). We say that \(S_1\) corresponds to \(M_2\), denoted \(S_1 \equiv M_2\), if \(M_1(p) = M_2(p)\) for all \(p \in P\) and \(V_1(x) = M_2(p_x) = \text{Range}(x) - M_2(p_x)\) for all \(x \in X\).

Theorem 2. The labelled transition system (LTS) of a marked p-free PNDV \((N_1, S_1)\) is isomorphic to the LTS of its translated marked PN \((N_2, M_2)\), where \(N_2 = \text{p-free-PNDV-to-PN}(N_1)\) and any \(M_2\) s.t. \(S_1 \equiv M_2\).

A proof of Theorem 2 is provided in Appendix A.

Corollary 1. Reachability is decidable for p-free PNDVs.

Proof. Let \((N_1, S_1)\) be a marked p-free PNDV, then following Theorem 2, it is possible to construct a marked PN \((N_2, M_2)\) s.t. its LTS is isomorphic to the LTS of \((N_1, S_1)\). Since reachability is decidable for PNs [14,12], it follows that reachability is decidable for p-free PNDVs.

\[\square\]
5 Discrete Timed-Arc Petri Nets

In this section we shall describe a reduction from bounded (DTAPNs), with discrete time semantics, to PNDVs that preserves marking reachability. This reduction demonstrates the full modelling capabilities of PNDVs by showing that this model can encode bounded DTAPNs for reachability analysis.

Definition 5. (Discrete timed-arc Petri net) A DTAPN is a quadruple \(D = (P, T, F, \text{times}) \), where \(P \) and \(T \) are defined as for PNs and

\[F \subseteq (P \times T) \cup (T \times P) \]

is the flow relation, and

\[\text{times} : F|_{P \times T} \to \{[a, b] \mid a \in \mathbb{N}, b \in \mathbb{N} \cup \{\infty\}\} \]

maps intervals to input arcs.

Let \(D = (P, T, F, \text{times}) \) be a DTAPN. A marking on \(D \) is a mapping \(M : P \to \mathbb{B}(\mathbb{N}) \), where \(\mathbb{B}(\mathbb{N}) \) denotes the set of finite multisets of natural numbers. The natural numbers correspond to the age of the tokens at a given place. The preset \(\cdot y \) of a place or transition \(y \) is

\[\cdot y = \{z \in P \cup T \mid (z, y) \in F\} \]

the postset is defined similarly. A marked DTAPN is a pair \((D, M_0) \) where \(D \) is a DTAPN and \(M_0 \) is an initial marking on \(D \) s.t. all tokens have age 0.

Given a marking \(M \), a transition \(t \) is enabled if there exists a token \(x \in M(p) \) where \(x \in \text{times}(p, t) \), for all \(p \in \cdot t \). If \(t \) is enabled in marking \(M \) then it can fire, yielding a new marking \(M' \), denoted \(M \xrightarrow{t} M' \), where \(M'(p) = (M(p) \setminus \text{In}(p, t)) \cup \text{Out}(t, p) \) for every place \(p \in P \), where \(\setminus \) and \(\cup \) are operations on multisets,

\[
\text{In}(p, t) = \begin{cases} \{x\} & \text{if } p \in \cdot t \land x \in M(p) \land x \in \text{times}(p, t) \\ \emptyset, & \text{otherwise} \end{cases}
\]

\[
\text{Out}(p, t) = \begin{cases} \{0\}, & \text{if } p \in t^* \\ \emptyset, & \text{otherwise} \end{cases}
\]

and from each place \(p \in \cdot t \), a single token satisfying the age constraint is removed and a new token of age 0 is added to every place \(p \in t^* \). Given a marking \(M \) a delay can occur yielding a new marking \(M' \), denoted \(M \xrightarrow{d} M' \), where \(M'(p) = \{x + 1 \mid x \in M'(p)\} \) for all \(p \in P \). This increments the age of all tokens by one. For simplicity we assume that a time delay is always 1, as any other delay can be simulated with this.

A marked DTAPN \((D, M_0)\) is said to be k-bounded if it holds that \(|M(p)| \leq k\) for every place \(p \in P \) in every reachable marking \(M \in \mathcal{R}(M_0) \). For convenience we may write \(\beta_i(p, t) \) to denote \(b_i \), for \(i = 1, 2 \), when \(\text{times}(p, t) = [b_1, b_2] \).

5.1 Reduction From Bounded DTAPN to PNDV

Reachability is known to be undecidable for discrete timed-arc Petri nets DTAPNs [18]. Nevertheless, reachability is decidable for bounded DTAPNs [5]. In this section we propose a reduction from k-bounded DTAPN \(D \) to PNDV \(N \)
that preserves reachability. The overall idea of the reduction is to simulate aging
of up to \(k \) tokens in every place and to ensure that time intervals are simulated
correctly. Reduction from a timed model into an untimed model introduces a
number of challenges, presented in the following.

The first problem is how markings on a DTAPN are represented in a PNDV,
since a marking in \(D \) associates ages with individual tokens, whereas \(N \) only
stores the number of tokens in each place. This problem is solved by storing the
ages of up to \(k \) tokens with \(k \) variables \(\{ x_p^1, \ldots, x_p^k \} \) for every place \(p \in P \).

For example, a marking \(M \) on \(D \), where \(M(p) = \{ 0, 2, 2 \} \) is represented
by a state \(S' = (M', V') \) on \(N \), s.t. \(M'(p) = 3, V'(x_p^1) = 0, V'(x_p^2) = 2 \) and
\(V'(x_p^3) = 2 \). Notice that \(M'(p) \) is the number of tokens in \(p \) and the variables
\(x_p^1, x_p^2 \) and \(x_p^3 \) keep track of the age of each token.

For every place \(p \) its token variables \(\{ x_p^1, \ldots, x_p^k \} \) are bounded by a maximal
value, \(\text{MAXAGE}(p) \), s.t. enabledness of every transition \(t \in p^* \) is unaffected by
further aging [18]. \(\text{MAXAGE}(p) \) is computed by adding 1 to the maximal interval
endpoint that is not \(\infty \) on the output arcs from \(p \).

\[
\text{MAXAGE}(p) = 1 + \max \{ \beta_i(p, t) \mid t \in p^*, \beta_i(p, t) < \infty, i = 1, 2 \} \tag{8}
\]

To simulate transitions we could introduce a transition for every possible
state, but to avoid exponentially many transitions we simulate one transition
firing \(M \rightarrow M' \) in \(D \) with multiple transition firings \(S \rightarrow S_1 \rightarrow \ldots \rightarrow S_q \rightarrow S' \).
We call the intermediate states \(S_1, \ldots, S_q \) unstable and introduce a lock variable \(\ell \). The lock ensures that we avoid undesirable and inconsistent behavior, for
instance, if a token was consumed while aging.

To model transitions in \(D \) we insert an interval gadget between every transi-
tion and its input places. Figure 4 illustrates an interval gadget that simulates an
input arc \((p_i, t_j) \) for transition \(t_j \). Token variables for input place \(p_i \) are shown to
the right. The take-token transitions \(t_{u,j}^i \), for \(1 \leq u \leq k \), simulate consumption of
token \(x_{p_i}^u \), and are only enabled if there are at least \(u \) tokens in \(p_i \) and token \(x_{p_i}^u \)
satisfies the time interval, since the number of tokens in \(p_i \) denotes the number of
variables to consider for consumption. When token \(x_{p_i}^u \) is removed, the post-
condition ensures that the ages of the remaining tokens are preserved. The lock \(\ell \) is also acquired, guaranteeing that no other transition can begin firing before
\(t_j \) has finished.

To simulate delays we construct a 1-safe ring of aging gadgets, s.t. all variables
have been incremented by 1 (if the variables are less than their maximum values)
when the token has done a single pass through the ring. Note that the aging ring
also acquires the lock \(\ell \), such that tokens cannot be consumed while aging. Figure
5 shows the aging gadget for place \(p_i \). An age transition \(t_{u,p_i}^{age} \) increments the token
variable \(x_{p_i}^u \) by 1, and is enabled if \(x_{p_i}^u < \text{MAXAGE}(p_i) \). The max transition \(t_{u,p_i}^{max} \)
does not increment the token variable, and is enabled when no further aging is
possible, i.e. \(x_{p_i}^u = \text{MAXAGE}(p_i) \). Note, \(t_{u,p_i}^{age} \) and \(t_{u,p_i}^{max} \) are never enabled at the
same time. The aging gadgets for all places are arranged in a ring, where the
first place is marked. The first and last transitions acquire and release the lock
\(\ell \), see Algorithm 2 step 6 to 8 for details.
\[\text{Pre}(t_{i,j}^u) = (p_{i,j} = 0 \land p_i \geq u) \land (a_i^j \leq x_{p_i}^u \land x_{p_i}^u \leq b_i^j) \land (\ell = 0 \lor \ell = j) \]

\[\text{Post}(t_{i,j}^u) = \ell := j \cup \{x_{p_i}^v := x_{p_i}^{u+1} \mid u \leq v < k\} \]

Fig. 4: An interval gadget \([a_i^j, b_i^j]\). Here \(p_i\) is some place \(p_i \in \bullet t_{j}\), shown in Figure 6

\[\text{Pre}(t_{u,p_i}^{\text{age}}) = x_{p_i}^u = \text{MAXAGE}(p_i) \]

\[\text{Post}(t_{u,p_i}^{\text{age}}) = x_{p_i}^u < \text{MAXAGE}(p_i) \]

Fig. 5: An aging gadget for one place with at most \(k\) tokens

\[\text{Post}(t_j) = \ell := 0 \cup \{x_{p_i}^u := x_{p_i}^{u-1} \mid p_i \in t_j^* \mid 2 \leq u \leq k\} \cup \{x_{p_i}^1 := 0 \mid p_i \in t_j^*\} \]

Fig. 6: A reduction from a \(k\)-bounded DTAPN to PNDV. The diamond shapes represents either interval or aging gadgets. The aging ring is shown to the right

Figure 6 illustrates the reduction from \(k\)-bounded DTAPN to PNDV. When transition \(t_j\) fires, it releases the lock \(\ell\) and shifts the token variables of the places in its postset, while setting the first token variable to 0. Note that it is possible to
deadlock in a situation where one of the interval gadgets for t_j has acquired the lock ℓ, but the other interval gadgets for the transition were unable to consume a token, so t_j cannot fire. However, as previously mentioned this reduction only preserves marking reachability, and not liveness. A formal description of this reduction is available in Algorithm 2.

Algorithm 2 Reduction from k-bounded DTAPN to PNDV

Input: A k-bounded DTAPN $D = (P, T, F, \text{times})$ with initial marking M_0, where $P = \{p_1, \ldots, p_i, \ldots, p_n\}$ and $T = \{t_1, \ldots, t_j, \ldots, t_m\}$.

Output: A PNDV $N = (P', T', X, F', \text{Range}, \text{Pre}, \text{Post})$ with initial state $S_0 = (M'_0, V'_0)$.

1. Create original places and transitions, set $P' = P$ and $T' = T$.
2. Create variables, $X = \{\ell\} \cup \{x_{p_i}^u \mid p_i \in P, 1 \leq u \leq k\}$, where $\text{Range}(\ell) = m + 1$ and $\text{Range}(x_{p_i}^u) = \text{MaxAge}(p_i)$ for all $x_{p_i}^u \in X \setminus \{\ell\}$.
3. For each $t_j \in T$, release lock and set the first token variable to 0 and shift the others, for all $p_i \in t^*_j$:
 - $\text{Post}(t_j) = \ell := 0; \cup \{x_{p_i}^u := x_{p_i}^{u-1}; p_i \in t^*_j, 2 \leq u \leq k\} \cup \{x_{p_i}^1 := 0; p_i \in t^*_j\}$.
4. For each output arc $(t_j, p_i) \in F$, set $F'(t_j, p_i) = 1$.
5. For each input arc $(p_i, t_j) \in F$, create an interval gadget (see Figure 4):
 (a) Add intermediate place, set $P' = P' \cup \{p_i\}$.
 (b) Connect it to t_j, set $F'(p_i, t_j) = 1$.
 (c) Add take-token transitions for interval $[a^i_j, b^i_j] = \text{times}(p_i, t_j)$, set $T' = T' \cup \{t^u_{a^i_j} \mid 1 \leq u \leq k\}$ with pre- and post conditions:
 - $\text{Pre}(t^u_{a^i_j}) = (p_i, j = 0 \land p_i \geq u) \land (a^i_j \leq x_{p_i}^u \land x_{p_i}^u < b^i_j) \land (\ell = 0 \lor \ell = j)$;
 - $\text{Post}(t^u_{a^i_j}) = \ell := j; \cup \{x_{p_i}^u := x_{p_i}^{u+1} \mid u \leq v < k\}$.
6. For each place $p_i \in P$ create an aging gadget (see Figure 5):
 (a) Add aging places, set $P' = P' \cup \{u_{p_i}^1 \mid 1 \leq u \leq k\}$.
 (b) Add aging transitions, set $T' = T' \cup \{t^{age}_{u,p_i,b_{u,p_i}} \mid 1 \leq u \leq k\}$.
 (c) Connect aging places and transitions, set:
 - $F'(u_{p_i}^u, t^{w}_{u,p_i,\text{age}^u}) = 1$, for $1 \leq u \leq k$,
 - $F'(t^{w}_{u,p_i,\text{age}^u}, u_{p_i}^{w+1}) = 1$, for $1 \leq u \leq k - 1$, where $w \in \{\text{age}, \text{max}\}$.
 (d) Create pre- and post-conditions:
 - $\text{Pre}(t^{age}_{u,p_i}) = x_{p_i}^u < \text{MaxAge}(p_i)$;
 - $\text{Pre}(t^{max}_{u,p_i}) = x_{p_i}^u = \text{MaxAge}(p_i)$;
 - $\text{Post}(x^{age}_{u,p_i}) = x_{p_i}^u := x_{p_i}^u + 1$;
7. Connect the aging gadgets in a ring:
 - $F'(t^k_{p_i, w, u_{p_i}^1}) = 1$, for $1 \leq i \leq n - 1$,
 - $F'(t^k_{p_i, w, u_{p_i}^1}) = 1$, where $w \in \{\text{age, max}\}$
8. Create start and stop conditions for aging ring:
 - $\text{Post}(t^{age}_{\text{sum}, u_{p_i}^u}) = \ell := 0; x_{p_i}^u := x_{p_i}^u + 1$;
 - $\text{Post}(t^{max}_{\text{sum}, u_{p_i}^u}) = \ell := 0$;
 - $\text{Post}(t^{age}_{\text{range}, u_{p_i}^u}) = \ell := m + 1; x_{p_i}^u := x_{p_i}^u + 1$;
 - $\text{Post}(t^{max}_{\text{range}, u_{p_i}^u}) = \ell := m + 1$.
9. Create initial marking, s.t. $M'_0(a_{p_i}^1) = 1$ and $M'_0(p_i) = |M(p_i)|$ for all $p_i \in P$.

12
5.2 Correctness of the Reduction

In this section we prove the correctness of the reduction. We argue that there is a correspondence between markings in the original net and the translation, using a technique similar to the method for relating timed transition systems, proposed in [6] and [10]. For the rest of this section let \((D, M_0)\) be a marked k-bounded DTAPN and \((N, S_0)\) be a marked PNDV translation of \((D, M_0)\) using the reduction.

Definition 6 (Stable state). A state \(S = (M, V)\) on \(N\) is said to be stable, denoted \(S \models stable\), if \(V(\ell) = 0\).

Definition 7 (Correspondence). Let \(M \in M(D)\) and \(S \in S(N)\), \(M \equiv S\), if \(S \models stable\) and for all \(p \in P\) it holds that

\[
\{\min(x, MaxAge(p)) \mid x \in M(p)\} = \{V'(x^1_p) \mid 1 \leq i \leq M'(p)\}
\]

, where the left- and right-handside are multisets.

Let \(\leadsto\) denote a sequence of transitions \(S = S_0 \rightarrow S_1 \rightarrow S_2 \rightarrow \cdots \rightarrow S_{m-1} \rightarrow S_m = S'\) in \(N'\), where \(S, S' \models stable\) and all intermediate states \(S_1, S_2, \ldots, S_{m-1} \not\models stable\). The reflexive and transitive closure of \(\leadsto\) is \(\leadsto^*\). The function \(tr : Cond_x \rightarrow Cond\) translates conditions, such that \(tr(c_x) = c_x \land (\ell = 0)\) for all \(c_x \in Cond_x\).

Lemma 1. Let \(M\) be a marking on \(D\) and \(S\) be a state on \(N\), where \(M \equiv S\) and \(\alpha = \{t, d\}\).

1. If \(M \xrightarrow{d} M'\), then \(S \leadsto S'\) such that \(M' \equiv S'\).
2. If \(S \leadsto S'\), then \(M \xrightarrow{t} M'\) such that \(M' \equiv S'\).

Proof (Sketch). If \(M \xrightarrow{d} M'\), then an iteration through the aging ring \(S \leadsto S'\) will increment all token variables, if needed. And because of the \(\max\) application on the left handside in Definition 7 it does not matter that token variables are not aged beyond \(MaxAge(p)\) for their place \(p\). If \(M \xrightarrow{t} M'\), then correspondence between \(M\) and \(S\) ensures that \(p_{i,j}\) can be marked for all \(i\) s.t. \(p_i \in \bullet t_j\), thus ensuring that \(t_j\) can fire in \(N\), leading to a state \(S'\) corresponding to \(M'\). Thus, we have shown the first case 1.

If \(S \leadsto S'\), then one of two things could have happened, (i) \(N\) took an iteration through the aging ring, or (ii) a transition \(t_j\) was fired setting \(\ell = 0\). In case (i) a delay \(M \xrightarrow{d} M'\) will increment all token ages by one, again aging beyond \(MaxAge(p)\) for their respective places \(p\) will not affect correspondence. If some transition \(t_j\) was fired, then clearly tokens satisfying intervals on the arcs from the preset of \(t_j\) in \(D\), s.t. \(M \xrightarrow{t} M'\), must be available in \(M\). Since the interval gadgets ensure that only tokens satisfying the interval on an input arc can be consumed by \(t_j\). Thus, 2 holds for both case (i) and (ii).\]
Lemma 2 (Agreement). Let M be a marking on D, S be a state on N, where $M \equiv S$, and $c_x \in \text{Cond}_x$, then $M \models c_x$ if and only if $S \models \text{tr}(c_x)$.

Proof. By Definition 7, $M \equiv S$ implies that there is the same number of tokens in each place. Since the condition c_x only quantifies over the number of tokens, it must hold. Note that the definition of correspondence also ensures that $S = (M', V')$ is stable, thus $V'(\ell) = 0$.

Theorem 3. Let M be a marking on D and S be a state on N, where $M \equiv S$. Let $c_x \in \text{Cond}_x$ be a query, then $M \xrightarrow{\ast} M'$ s.t. $M' \models c_x$ if and only if $S \xrightarrow{\ast} S'$ s.t. $S' \models \text{tr}(c_x)$.

Proof. In step 9 of Algorithm 2 state $S_0 = (M'_0, V_0)$ and marking M'_0 are given the same number of tokens in each place, since M_0 and $V_0(x) = 0$ for all $x \in X$. By definition, the ages of tokens in a marked DTAPN are initially 0, meaning that $S_0 \equiv M_0$.

"⇒": Since $S_0 \equiv M_0$ we can conclude that $M \xrightarrow{\ast} M'$ if and only if $S \xrightarrow{\ast} S'$ where $M' \equiv S'$ by repeated application of Lemma 1. Following Lemma 2 we prove that if $M \xrightarrow{\ast} M'$ where $M' \models c_x$, then $S \xrightarrow{\ast} S'$ where $S_0 \models \text{tr}(c_x)$. This is possible because $S \xrightarrow{\ast} S'$ implies $S \xrightarrow{\ast} S'$.

"⇐": To prove that if $S \xrightarrow{\ast} S'$, where $S' \models \text{tr}(c_x)$ then $M \xrightarrow{\ast} M'$ where $M' \models c_x$ holds, we must consider the fact that S' must be stable in order to satisfy $\text{tr}(c_x)$, thus we might as well write $S \xrightarrow{\ast} S'$ for which we know it holds.

6 Verification of PNDVs

Now that we have demonstrated the modelling capabilities of PNDVs, we move onto the verification of this model. In this section we present algorithms for reachability analysis of bounded PNDVs. We describe a heuristic used to improve the efficiency of state space search, as well as an over-approximation technique that is useful for disproving reachability. Lastly, we present experimental results for these algorithms.

Algorithm 3 shows a general (naive) graph searching algorithm for performing reachability analysis. It can be implemented as a depth first search (DFS) or breadth first search (BFS), depending on the order in which states are taken from the queue in line 5. The algorithm guaranteed to terminate on bounded PNDVs. We can easily improve this algorithm by transforming it into a best first search algorithm (BestFS), by prioritizing the most promising states, using a heuristic cost estimate, described in Section 6.1.
Algorithm 3: General Reachability Search algorithm for satisfying a query

1: function Reachability-Search(N, S₀, q)
2: (P, T, X, Range, F, Pre, Post) = N
3: Q = Z = {S₀}
4: while Q ≠ ∅ do
5: Choose S from Q
6: if eval(q, M, V) = true, where S = (M, V) then
7: return “Query q is satisfiable”
8: end if
9: for S’, such that S₁→ S’, where t ∈ T do
10: if S’ ∉ Z then
11: Z = Z ∪ {S’}
12: Q = Q ∪ {S’}
13: ▷ Insert S’ into the queue
14: end if
15: end for
16: Q = Q \ {S}
17: end while
18: return “Query q is not satisfiable”
end function

6.1 Best First Reachability Search

In this section we present a modification of Algorithm 3 that attempts to reach a marking satisfying the query using as few iterations as possible. Thus, if a query is satisfiable, this approach may explore a smaller subset of the state space than the naive approach in Algorithm 3.

The idea is to do best first search with a heuristic to choose a state S from the queue Q that is likely to be close to a state satisfying the query. In order to do this, we need a heuristic distance function to estimate the distance a state is from satisfying a query. The heuristic takes both logical conditions and comparisons into consideration when calculating the estimate.

To estimate the distance when comparing two integers, given an operator they need to satisfy, we introduce the auxiliary function \(\Delta : \mathbb{N} \times \{=, <, \leq, >, \geq, \neq\} \times \mathbb{N} \rightarrow \mathbb{N} \), as defined in Table 1.

\[
\begin{align*}
\Delta(v₁, =, v₂) &= |v₁ - v₂| \\
\Delta(v₁, \neq, v₂) &= \begin{cases} 1, & \text{if } v₁ = v₂ \\ 0, & \text{otherwise} \end{cases} \\
\Delta(v₁, <, v₂) &= \max(v₁ - v₂ + 1, 0) \\
\Delta(v₁, >, v₂) &= \Delta(v₂, <, v₁) \\
\Delta(v₁, \leq, v₂) &= \max(v₁ - v₂, 0) \\
\Delta(v₁, \geq, v₂) &= \Delta(v₂, \leq, v₁)
\end{align*}
\]

Table 1: Formal \(\Delta \) Specification

The function \(\Delta \) is designed to yield a lower value if the numbers are close to satisfy the operator. For example, \(\Delta(3, <, 2) = 2 > \Delta(3, <, 3) = 1 \), because \(\Delta(3, <, 3) \) is closer to being satisfied than \(\Delta(3, <, 2) \).

To estimate the distance between a state and a query the function \(dist : S \times Cond \rightarrow \mathbb{N} \) is introduced in Table 2. It makes use of the previously defined
function Δ to calculate the distance estimate of the comparison operators. Given a state S and a query q, dist yields an integer estimate of the distance from state S to a state S' satisfying the query q.

Note that we avoid handling the negation construction \neg, in the distance function (Table 2), by rewriting queries to a form without the use of negation using boolean rules, i.e. inverting operators and swapping conjunctions and disjunctions. When computing the distance for conjunctions we take the sum of the distance between two operands. Consequently, increasing the distance if there are many conjunctions with unsatisfied operands. For disjunctions the heuristic returns the distance to the most optimistic operand, i.e the operand with the lowest distance.

\[
\text{dist}(s, e_1 \sqsubseteq e_2) = \Delta(\text{eval}(e_1, M, V), \sqsubseteq, \text{eval}(e_2, M, V)),
\]
where $s = (M, V)$ and $\sqsubseteq \in \{=, <, \leq, >, \geq, \neq\}$

\[
\begin{align*}
\text{dist}(s, c_1 \land c_2) &= \text{dist}(s, c_1) + \text{dist}(s, c_2) \\
\text{dist}(s, c_1 \lor c_2) &= \min(\text{dist}(s, c_1), \text{dist}(s, c_2))
\end{align*}
\]

Table 2: Formal dist Specification

We create a best first search algorithm by replacing line 5 in Algorithm 3 with $S = \arg \min_{S \in Q} \text{dist}(S, q)$. This heuristic operates under the assumption that similar states are likely to be a few firings away from each other. As we will see in Section 6.3, this assumption works for most of the queries used in the experiments. Nevertheless, it is possible to create a scenario where the heuristic estimate degrades.

This heuristic operates under the assumption that similar states are only a few firings away from each other. As Section 6.3 will show, this is true for many interesting queries, however it will likely be possible to create a PN where this fact leads to a longer search.

6.2 Over-Approximation Using Integer Programming

The techniques presented so far rely on searching through the state space. Now we will present a technique based on integer programming proposed by Esparza and Melzer in [7], which can be used to efficiently disprove reachability in some cases, by over-approximating the state space, hence avoiding state space explosion. The intuition behind this technique is that reachability can be ruled out if there does not exist any combination of transitions such that a target marking is reachable. This technique provides an over-approximation for ordinary PNs, but by discarding variables, pre- and post-conditions it can still be used for PNDVs.

Given a PN $N = (P, T, F)$ and markings $M_0, M' \in \mathcal{M}(N)$, if there is a sequence of transitions $M_0 \rightarrow \cdots \rightarrow M'$, such that M' is reachable from M_0, then there is a firing vector $\theta : T \rightarrow \mathbb{N}$, such that, the state equation,

\[
M_0(p) + \sum_{t \in T} (F(t, p) - F(p, t)) \cdot \theta(t) = M'(p)
\]
holds for all $p \in P$ [3]. Clearly, a solution to $\theta(t)$ is the number of times t was fired in a sequence of transitions from M_0 to M'. Notice that a solution to the
state equation does not imply that M' is reachable, but if M' is reachable it implies the existence of a solution. Conversely, if there is no solution to the state equation, M' is not reachable from M_0. The state equation can be expressed as a matrix equation and solved using linear algebra, yet this does not ensure a positive integer solution. Esparza and Melzer proposed the usage of integer programming to solve the state equation in [7], ensuring $\theta(t) \in \mathbb{N}$ for all $t \in T$, thus providing a more accurate approximation.

![Fig. 7: A simple PN](image)

To determine whether it is possible or not for the marked PN in Figure 7 to satisfy the query $c = (5 \leq p_1 \land p_1 \leq 7) \land (6 \leq p_2 \lor p_2 \leq 2)$, we can derive two systems of inequations

$$s_1 = \begin{cases} 10 - 1 \cdot \theta(t_1) \leq 7, \\ 10 - 1 \cdot \theta(t_1) \geq 5, \\ 0 + 1 \cdot \theta(t_1) \leq 2, \\ 0 + 1 \cdot \theta(t_1) \geq 0 \end{cases},$$

$$s_2 = \begin{cases} 10 - 1 \cdot \theta(t_1) \leq 7, \\ 10 - 1 \cdot \theta(t_1) \geq 5, \\ 0 + 1 \cdot \theta(t_1) \leq \infty, \\ 0 + 1 \cdot \theta(t_1) \geq 0 \end{cases}.$$

If s_1 and s_2 are given as input to an integer programming solver, such as lp_solve [1], it will tell us that no integer solution exists for neither s_1 nor s_2. From this we can conclude that a marking satisfying c is not reachable in Figure 7. If an integer solution to either s_1 or s_2 was found, an incremental trap-testing refinement of the state equation proposed in [7] can easily be applied, once a solution is found. Implementation and preliminary experimentation with this technique in PeTe gave promising results. For a complete presentation of how to derive these systems of inequations from a query see Appendix B.

6.3 Evaluation

To evaluate the algorithms presented earlier in this section, we have implemented PeTe, a Petri net modelling and verification tool for PNDVs. PeTe is written in Qt/C++, and comes with a GUI and many variations of the algorithms presented earlier. A screenshot of PeTe can be found in Figure 8 in Appendix C, sources and binaries can be obtained from [2].

The models used to evaluate the efficiency of the algorithms are ordinary bounded Petri nets from the SUMo model checking contest [4], to which PeTe was also submitted. The submission kit for this contest provided three models: FMS, Kanban and MAPK as well as ten satisfiable and ten non-satisfiable queries for each model. Note that these models are designed to be scalable in the number of tokens, such that when scaling certain places, verification becomes increasingly more computationally demanding.

The efficiency of best first search (BestFS), described in Section 6.1, was evaluated by comparing it with two naive approaches, breadth first search (BFS) and
random depth first search (RDFS). Due to the irregularity of RDFS, all results for this algorithm are the average of ten runs. All experiments were performed on an Intel Core 2 Duo, running Ubuntu 10.10, where memory usage was restricted to a maximum of $1GiB$ and the tool would terminate upon exceeding this limit.

Table 3 shows the average running times of the three search strategies. Each value is the average completion time of ten different queries on each of the three models. The suffix of each model name denotes the scaling factor\(^1\). Considering the table, it is clear that the naïve search strategies were unable to verify queries for models with a higher scaling factor than the lowest one within the given memory constraints.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>RDFS</th>
<th>BFS</th>
<th>BestFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMS 4</td>
<td>1.4379</td>
<td>1.516</td>
<td>0.002</td>
</tr>
<tr>
<td>FMS 10</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>0.074</td>
</tr>
<tr>
<td>FMS 20</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>0.111</td>
</tr>
<tr>
<td>FMS 50</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>0.646</td>
</tr>
<tr>
<td>Kanban 5</td>
<td>5.865</td>
<td>5.301</td>
<td>0.002</td>
</tr>
<tr>
<td>Kanban 10</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>0.057</td>
</tr>
<tr>
<td>Kanban 20</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>0.066</td>
</tr>
<tr>
<td>Kanban 50</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>0.155</td>
</tr>
<tr>
<td>MAPK 8</td>
<td>20.2094</td>
<td>27.119</td>
<td>0.004</td>
</tr>
<tr>
<td>MAPK 40</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>0.086</td>
</tr>
<tr>
<td>MAPK 80</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>0.182</td>
</tr>
<tr>
<td>MAPK 160</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>0.142</td>
</tr>
</tbody>
</table>

From Table 3 it is clear that the BestFS is significantly faster than both BFS and RDFS. Moreover, the results show no considerable slowdown for BestFS as the scaling factor grows. We can conclude that BestFS is capable of handling larger models than the two naïve approaches. For results for larger scaling factors see Appendix F. To further explore the limits of BestFS additional experiments were performed by randomly generating 1000 satisfiable queries for each instance of the models. Table 4 presents the number of queries PeTe was unable to verify before terminating due to the memory constraint. Notice that not all scaling

\(^1\) See Appendix D for details on how models are scaled.
factors make it more difficult to verify queries. We believe this is attributed to the structure and counting places in the models. Besides this anomaly, the number of unverifiable queries grows with the scaling factor. From Table 4 it can be concluded that it is possible to find queries that BestFS cannot verify, even for rather small instances of Kanban.

Finally, the SUMo model checking contest submission kit [4] also provided non-satisfiable queries. While BestFS provided no improvement over naive search for these queries, the over-approximation presented in Section 6.2 was able to disprove all of them, for any scaling of each model in less than one second.

7 Conclusion

We have proposed a new extension of Petri nets that permits more modelling convenience over classical Petri nets. This model is Turing complete and we have given a decidable subset with the same expressive power as Petri nets. We have demonstrated the modelling power of Petri nets with discrete variables and their applications by simulating bounded discrete timed-arc Petri nets, allowing one to decide reachability. Finally, we have developed heuristic algorithms for reachability analysis of Petri nets with discrete variables. We have confirmed their advantages over naive and randomized search through experimental results, showing that larger models may become tractable when heuristics are applied. Future development could include integrating over-approximation with best first search, hence enabling exclusion of unpromising branches. Alternatively, a framework for determining when over-approximation is exact could be developed.

References

1. lp_solve - linear and integer programming solver, http://lpsolve.sourceforge.net/5.5/
A Proof of Theorem 2

Theorem 2. The labeled transition system (LTS) of a marked p-free PNDV \((N_1, S_1)\) is isomorphic to the LTS of its translated marked PN \((N_2, M_2)\), where \(N_2 = p\text{-FREE-PNDV-TO-PN}(N_1)\) and any \(M_2\) s.t. \(S_1 \equiv M_2\).

Proof. We prove isomorphism by showing that (i) the correspondence relation is a bijection, (ii) \(S'_1 \xrightarrow{t} S''_1\) implies \(M'_2 \rightarrow M''_2\), where \(S''_1 \equiv M''_2\), and (iii) \(M'_2 \xrightarrow{t} M''_2\) implies \(S'_1 \rightarrow S''_1\), where \(S'_1 \equiv M'_2\).

Considering the correspondence relation in Definition 4 it is obvious that any state \(S'_1\) on \(N_1\) has exactly one corresponding marking \(M'_2\) on \(N_2\). Since the complement place is accounted for in the correspondence relation, any marking \(M'_2\) on \(N_2\) for which a corresponding state \(S'_1\) on \(N_1\) exists, \(S'_1\) is unique. Thus, the correspondence relation is a bijection between all states on \(N_1\) and any marking on \(N_2\) that has a corresponding state on \(N_1\). Hence, we have shown (i).

We show (ii), by considering the transition \(t\) for which \(S'_1 = (M'_1, V) \xrightarrow{t} S''_1\). By enabledness we know that valuation \(V\) satisfies \(Pre(t)\). This valuation \(V\) must have been considered during the translation to PN, thus a transition \(t_V\) must exist in \(T_2\), s.t. \(M'_2 \xrightarrow{t_V} M''_2\), where \(S''_1 \equiv M''_2\).

(iii) follows from the consideration that in \(M'_2 \xrightarrow{t} M''_2\) the transition \(t'\) must be of the form \(t' = t_V\), for some valuation \(V\), s.t. \(S'_1 = (M'_1, V)\), otherwise \(M'_2\) and \(S'_1\) would not correspond. From the translation we know that \(t = t_1\), where \(V \models Pre(t)\), must exist s.t. \(S'_1 \xrightarrow{t} S''_1\) and \(S''_1 \equiv M''_2\). Thus, we have shown (i), (ii) and (iii), proving isomorphism. \(\square\)

B Over-Approximation Using Integer Programming

In this section elaborate on the derivation of inequations from a reachability query. First we define a reduced condition language \(\text{Cond}_r\) for expressing reachability queries,

\[\text{Cond}_r := p \gg z | c_r \vee c_r | c_r \wedge c_r\]

where \(\gg \in \{=, <, \leq, >, \geq, \neq\}\), \(z \in \mathbb{Z}\) and \(p \in P\). For simplicity negation is not included, however it can be easily achieved by rewrite the formula using the rules for boolean logic.

A marking constraint \(y \in CON = P \rightarrow \{[a, b] \mid a \in \mathbb{N}, b \in \mathbb{N} \cup \{\infty\}\}\) is a mapping from places to intervals. For convenience we let \(y = \{p \mapsto [z_1, z_2]\}\), where \(p \in P\) and \(z_1, z_2 \in \mathbb{Z}\), denote a constraint \(y \in CON\), such that \(y(p) = [z_1, z_2]\) and \(y(p') = [0, \infty]\) for all \(p' \in P \setminus \{p\}\). In the end each marking constraint will be translated into a system of inequations. To deduce a set of marking constraints from a query, we introduce an auxiliary function \(cons: \text{Cond}_r \rightarrow \mathbb{2}^{\text{CON}}\), as defined in Table 5.

The function \(cons\) is defined such that a marking \(M\) satisfies a query \(c_r\), if and only if there exists a constraint \(y \in cons(c_r)\) where \(M(p) \in y(p)\) for all \(p \in P\). This property enables us to exploit the expressive power of integer
\[\text{cons}(c_1 \land c_2) = \{ \text{combine}(y_1, y_2) \mid y_1 \in \text{cons}(c_1), y_2 \in \text{cons}(c_2) \} \]

where \(\text{combine}(y_1, y_2)(p) = y_1(p) \cap y_2(p) \), for all \(p \in P \)

\[\text{cons}(c_1 \lor c_2) = \text{cons}(c_1) \cup \text{cons}(c_2) \]

\[\text{cons}(p = z) = \{ \{ p \mapsto [k; z] \} \} \]

\[\text{cons}(p \neq z) = \{ \{ p \mapsto [0; z - 1] \}, \{ p \mapsto [z + 1; \infty] \} \} \]

\[\text{cons}(p \leq z) = \{ \} \]

\[\text{cons}(p \geq z) = \{ \{ p \mapsto [z; \infty] \} \} \]

\[\text{cons}(p < z) = \{ \{ p \mapsto [0; z - 1] \} \} \]

\[\text{cons}(p > z) = \{ \{ p \mapsto [z + 1; \infty] \} \} \]

Table 5: Auxiliary function for extracting constraints

programming to create a system of inequations for each \(y \in \text{cons}(c_r) \) and if none of these systems have a positive integer solution, we can conclude that a marking satisfying \(c_r \) is not reachable.

Algorithm 4 Over-approximation Using Integer Programming

1: function CAN-DISPROVE-REACHABILITY(q, M_0, N)
2: (P, T, F) = N
3: for all \(y \in \text{cons}(q) \) do
4: sys = \emptyset
5: for all \(p \in P \) do
6: \([\text{min}, \text{max}] = y(p)\)
7: sys = sys \cup M_0(p) + \sum_{t \in T} (F(t, p) - F(p, t)) \cdot \theta(t) \geq \text{min}
8: sys = sys \cup M_0(p) + \sum_{t \in T} (F(t, p) - F(p, t)) \cdot \theta(t) \leq \text{max}
9: end for
10: if there is an integer solution to \(\theta \) satisfying constraints in \(\text{sys} \) then
11: return "Conclude marking satisfying \(q \) might be reachable"
12: end if
13: end for
14: return "Conclude marking satisfying \(q \) is not reachable"
15: end function

Algorithm 4 shows how the marking constraints derived with \(\text{cons} \) can be used to construct the systems of inequations that is sufficient to prove a query not reachable.
C PeTe

![PeTe Model Editor]

Fig. 8: A screenshot of PeTe, demonstrating the model editor, and the side bars for queries and variables

D Models Used for Experiments
Fig. 9: FMS model used for experiments. FMS is scaled by increasing the number of tokens in places P_1, P_2, and P_3.
Fig. 10: Kanban model used for experiments. Kanban is scaled by increasing the number of tokens in places P_1, P_2, P_3 and P_4.
Fig. 11: MAPK model used for experiments. MAPK is scaled by increasing the number of tokens in places Phase1, Phase2, Phase3, MEK, ERK, Raf and RasGTP.
E Running Times for FMS and MAPK

Fig. 12: Running Times for three queries on FMS. Each line represents the running time for a selected query. These queries were provided by the SUMo Model Checking Contest submission kit [4]. All measurements are in seconds.

Fig. 13: Running times for three queries on Kanban. Each line represents the running time for a selected query. These queries were provided by the SUMo Model Checking Contest submission kit [4]. All measurements are in seconds.
Fig. 14: Running times for three queries on MAPK. Each line represents the running time for a selected query. These queries were provided by the SUMo Model Checking Contest submission kit [4]. All measurements are in seconds.

F Experimental Results
<table>
<thead>
<tr>
<th>Model scale</th>
<th>Query</th>
<th>Running Time</th>
<th>Expanded States</th>
<th>Explored States</th>
<th>Path Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>FMS 4</td>
<td>fOK0320</td>
<td>0</td>
<td>87</td>
<td>342</td>
<td>30</td>
</tr>
<tr>
<td>FMS 4</td>
<td>fOK0033</td>
<td>0</td>
<td>176</td>
<td>480</td>
<td>44</td>
</tr>
<tr>
<td>FMS 4</td>
<td>fOK2039</td>
<td>0</td>
<td>34</td>
<td>165</td>
<td>34</td>
</tr>
<tr>
<td>FMS 10</td>
<td>fOK0320</td>
<td>0.07</td>
<td>324</td>
<td>1137</td>
<td>66</td>
</tr>
<tr>
<td>FMS 10</td>
<td>fOK0033</td>
<td>0.08</td>
<td>1751</td>
<td>4704</td>
<td>141</td>
</tr>
<tr>
<td>FMS 10</td>
<td>fOK2039</td>
<td>0.07</td>
<td>295</td>
<td>1568</td>
<td>85</td>
</tr>
<tr>
<td>FMS 20</td>
<td>fOK0320</td>
<td>0.09</td>
<td>1672</td>
<td>5499</td>
<td>126</td>
</tr>
<tr>
<td>FMS 20</td>
<td>fOK0033</td>
<td>0.15</td>
<td>8867</td>
<td>23587</td>
<td>371</td>
</tr>
<tr>
<td>FMS 20</td>
<td>fOK2039</td>
<td>0.07</td>
<td>170</td>
<td>917</td>
<td>170</td>
</tr>
<tr>
<td>FMS 50</td>
<td>fOK0320</td>
<td>0.28</td>
<td>18787</td>
<td>57939</td>
<td>306</td>
</tr>
<tr>
<td>FMS 50</td>
<td>fOK0033</td>
<td>1.61</td>
<td>154328</td>
<td>381144</td>
<td>1261</td>
</tr>
<tr>
<td>FMS 50</td>
<td>fOK2039</td>
<td>0.08</td>
<td>425</td>
<td>2327</td>
<td>425</td>
</tr>
<tr>
<td>FMS 100</td>
<td>fOK0320</td>
<td>1.67</td>
<td>135909</td>
<td>411537</td>
<td>606</td>
</tr>
<tr>
<td>FMS 100</td>
<td>fOK0033</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
</tr>
<tr>
<td>FMS 100</td>
<td>fOK2039</td>
<td>0.42</td>
<td>20950</td>
<td>110468</td>
<td>850</td>
</tr>
<tr>
<td>FMS 200</td>
<td>fOK0320</td>
<td>14.11</td>
<td>1042612</td>
<td>3141639</td>
<td>1206</td>
</tr>
<tr>
<td>FMS 200</td>
<td>fOK0033</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
</tr>
<tr>
<td>FMS 200</td>
<td>fOK2039</td>
<td>0.1</td>
<td>1700</td>
<td>9377</td>
<td>1700</td>
</tr>
<tr>
<td>FMS 500</td>
<td>fOK0320</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
</tr>
<tr>
<td>FMS 500</td>
<td>fOK0033</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
</tr>
<tr>
<td>FMS 500</td>
<td>fOK2039</td>
<td>9.91</td>
<td>504750</td>
<td>2652468</td>
<td>4250</td>
</tr>
</tbody>
</table>

Table 6: Table representing experimental data performed by PeTe on three queries from the FMS model supplied by the submission kit from [4]. Running time is the time in seconds PeTe took to find a state satisfying the query. Expanded states are the number of states from which all child states have been visited. Explored states is the number of states visited in total. Path length is the length of the path from the initial state, to the state satisfying the query.
<table>
<thead>
<tr>
<th>Model scale</th>
<th>Query</th>
<th>Running Time</th>
<th>Expanded States</th>
<th>Explored States</th>
<th>Path Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanban 5</td>
<td>fOK546289</td>
<td>0</td>
<td>267</td>
<td>1401</td>
<td>48</td>
</tr>
<tr>
<td>Kanban 5</td>
<td>fOK540199</td>
<td>0</td>
<td>60</td>
<td>428</td>
<td>60</td>
</tr>
<tr>
<td>Kanban 5</td>
<td>fOK547802</td>
<td>0</td>
<td>285</td>
<td>1629</td>
<td>48</td>
</tr>
<tr>
<td>Kanban 10</td>
<td>fOK546289</td>
<td>0.06</td>
<td>784</td>
<td>4964</td>
<td>96</td>
</tr>
<tr>
<td>Kanban 10</td>
<td>fOK540199</td>
<td>0.05</td>
<td>132</td>
<td>937</td>
<td>132</td>
</tr>
<tr>
<td>Kanban 10</td>
<td>fOK547802</td>
<td>0.06</td>
<td>560</td>
<td>3606</td>
<td>122</td>
</tr>
<tr>
<td>Kanban 20</td>
<td>fOK546289</td>
<td>0.08</td>
<td>2006</td>
<td>13558</td>
<td>192</td>
</tr>
<tr>
<td>Kanban 20</td>
<td>fOK540199</td>
<td>0.06</td>
<td>287</td>
<td>2145</td>
<td>284</td>
</tr>
<tr>
<td>Kanban 20</td>
<td>fOK547802</td>
<td>0.08</td>
<td>1362</td>
<td>8839</td>
<td>276</td>
</tr>
<tr>
<td>Kanban 50</td>
<td>fOK546289</td>
<td>0.27</td>
<td>13870</td>
<td>85287</td>
<td>480</td>
</tr>
<tr>
<td>Kanban 50</td>
<td>fOK540199</td>
<td>0.06</td>
<td>780</td>
<td>6580</td>
<td>780</td>
</tr>
<tr>
<td>Kanban 50</td>
<td>fOK547802</td>
<td>0.31</td>
<td>17464</td>
<td>106279</td>
<td>498</td>
</tr>
<tr>
<td>Kanban 100</td>
<td>fOK546289</td>
<td>0.99</td>
<td>52150</td>
<td>319537</td>
<td>960</td>
</tr>
<tr>
<td>Kanban 100</td>
<td>fOK540199</td>
<td>0.1</td>
<td>1960</td>
<td>17300</td>
<td>1960</td>
</tr>
<tr>
<td>Kanban 100</td>
<td>fOK547802</td>
<td>1.36</td>
<td>80744</td>
<td>479694</td>
<td>998</td>
</tr>
<tr>
<td>Kanban 200</td>
<td>fOK546289</td>
<td>2.21</td>
<td>92402</td>
<td>719878</td>
<td>1920</td>
</tr>
<tr>
<td>Kanban 200</td>
<td>fOK540199</td>
<td>0.23</td>
<td>8531</td>
<td>77169</td>
<td>8492</td>
</tr>
<tr>
<td>Kanban 200</td>
<td>fOK547802</td>
<td>7.45</td>
<td>372600</td>
<td>2268247</td>
<td>7836</td>
</tr>
<tr>
<td>Kanban 500</td>
<td>fOK546289</td>
<td>13.12</td>
<td>531062</td>
<td>4224118</td>
<td>4800</td>
</tr>
<tr>
<td>Kanban 500</td>
<td>fOK540199</td>
<td>1.26</td>
<td>45311</td>
<td>426849</td>
<td>45212</td>
</tr>
<tr>
<td>Kanban 500</td>
<td>fOK547802</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
</tr>
<tr>
<td>Kanban 1000</td>
<td>fOK546289</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
</tr>
<tr>
<td>Kanban 1000</td>
<td>fOK540199</td>
<td>4.76</td>
<td>170611</td>
<td>1633649</td>
<td>170412</td>
</tr>
<tr>
<td>Kanban 1000</td>
<td>fOK547802</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
</tr>
</tbody>
</table>

Table 7: Table representing experimental data performed by PeTe on three queries from the Kanban model supplied by the submission kit from [4]. Running time is the time in seconds PeTe took to find a state satisfying the query. Expanded states are the number of states from which all child states have been visited. Explored states is the number of states visited in total. Path length is the length of the path from the initial state, to the state satisfying the query.
<table>
<thead>
<tr>
<th>Model Scale</th>
<th>Query</th>
<th>Running Time</th>
<th>Expanded States</th>
<th>Explored States</th>
<th>Path Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAPK 8</td>
<td>fOK195609</td>
<td>0</td>
<td>127</td>
<td>972</td>
<td>62</td>
</tr>
<tr>
<td>MAPK 8</td>
<td>fOK191935</td>
<td>0.01</td>
<td>133</td>
<td>1336</td>
<td>69</td>
</tr>
<tr>
<td>MAPK 8</td>
<td>fOK198144</td>
<td>0.01</td>
<td>155</td>
<td>1346</td>
<td>90</td>
</tr>
<tr>
<td>MAPK 40</td>
<td>fOK195609</td>
<td>0.09</td>
<td>748</td>
<td>6942</td>
<td>206</td>
</tr>
<tr>
<td>MAPK 40</td>
<td>fOK191935</td>
<td>0.1</td>
<td>929</td>
<td>9001</td>
<td>261</td>
</tr>
<tr>
<td>MAPK 40</td>
<td>fOK198144</td>
<td>0.1</td>
<td>834</td>
<td>10756</td>
<td>272</td>
</tr>
<tr>
<td>MAPK 80</td>
<td>fOK195609</td>
<td>0.12</td>
<td>1620</td>
<td>14268</td>
<td>710</td>
</tr>
<tr>
<td>MAPK 80</td>
<td>fOK191935</td>
<td>0.11</td>
<td>1281</td>
<td>13958</td>
<td>590</td>
</tr>
<tr>
<td>MAPK 80</td>
<td>fOK198144</td>
<td>0.35</td>
<td>7553</td>
<td>83499</td>
<td>4644</td>
</tr>
<tr>
<td>MAPK 160</td>
<td>fOK195609</td>
<td>0.16</td>
<td>3088</td>
<td>28842</td>
<td>806</td>
</tr>
<tr>
<td>MAPK 160</td>
<td>fOK191935</td>
<td>0.19</td>
<td>3809</td>
<td>37321</td>
<td>1026</td>
</tr>
<tr>
<td>MAPK 160</td>
<td>fOK198144</td>
<td>0.21</td>
<td>3406</td>
<td>44389</td>
<td>1080</td>
</tr>
<tr>
<td>MAPK 320</td>
<td>fOK195609</td>
<td>0.25</td>
<td>6208</td>
<td>58042</td>
<td>1606</td>
</tr>
<tr>
<td>MAPK 320</td>
<td>fOK191935</td>
<td>0.32</td>
<td>7649</td>
<td>75081</td>
<td>2046</td>
</tr>
<tr>
<td>MAPK 320</td>
<td>fOK198144</td>
<td>0.36</td>
<td>6836</td>
<td>89249</td>
<td>2160</td>
</tr>
<tr>
<td>MAPK 640</td>
<td>fOK195609</td>
<td>1.11</td>
<td>35360</td>
<td>276978</td>
<td>16810</td>
</tr>
<tr>
<td>MAPK 640</td>
<td>fOK191935</td>
<td>0.45</td>
<td>10206</td>
<td>111748</td>
<td>4650</td>
</tr>
<tr>
<td>MAPK 640</td>
<td>fOK198144</td>
<td>13.94</td>
<td>351187</td>
<td>3839055</td>
<td>225900</td>
</tr>
<tr>
<td>MAPK 1280</td>
<td>fOK195609</td>
<td>0.86</td>
<td>24928</td>
<td>233242</td>
<td>6406</td>
</tr>
<tr>
<td>MAPK 1280</td>
<td>fOK191935</td>
<td>1.18</td>
<td>30689</td>
<td>301641</td>
<td>8166</td>
</tr>
<tr>
<td>MAPK 1280</td>
<td>fOK198144</td>
<td>1.34</td>
<td>27416</td>
<td>358400</td>
<td>8640</td>
</tr>
<tr>
<td>MAPK 2560</td>
<td>fOK195609</td>
<td>13.09</td>
<td>448640</td>
<td>3335298</td>
<td>220810</td>
</tr>
<tr>
<td>MAPK 2560</td>
<td>fOK191935</td>
<td>1.64</td>
<td>40806</td>
<td>447028</td>
<td>18570</td>
</tr>
<tr>
<td>MAPK 2560</td>
<td>fOK198144</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
<td>Out of memory</td>
</tr>
</tbody>
</table>

Table 8: Table representing experimental data performed by PeTe on three queries from the MAPK model supplied by the submission kit from [4]. Running time is the time in seconds PeTe took to find a state satisfying the query. Expanded states are the number of states from which all child states have been visited. Explored states is the number of states visited in total. Path length is the length of the path from the initial state, to the state satisfying the query.