Matematik Opgaver 1203-1204


Opgave 1203

LaTex: \begin{eqnarray} f_1'(x)&=&2x+1\\ f_1(x)&=&x^2+x+k\\ f_2'(x)&=&3x^2-2x+1\\ f_2(x)&=&x^3-x^2+x+k\\ f_3'(x)&=&-x-\frac{3}{x^2}\\ f_3(x)&=&-0,5x^2+\frac{3}{x}\\ f_4'(x)&=&4x^{-5}\\ f_4(x)&=&-x^{-4}\\ f_5'(x)&=&\frac{1}{2\sqrt{x}}\\ f_5(x)&=&\sqrt{x}\\ f_6'(x)&=&6x^3+3x^{-4}-\frac{5}{x^8}\\ f_6(x)&=&\frac{6}{4}x^4-x^{-3}+\frac{\frac{5}{7}}{x^7}\\ f_7'(x)&=&0\\ f_7(x)&=&42\\ f_8'(x)&=&e\\ f_8(x)&=&e\cdot x\\ f_9'(x)&=&1\\ f_9(x)&=&x+42\\ f_10'(x)&=&1+tan^2(x)\\ f_10(x)&=&x+tan(x)\\ f_11'(x)&=&sin(x)+2x\\ f_11(x)&=&-cos(x)+x^2\\ f_12'(x)&=&cos(2x)\\ f_12(x)&=&0,5\cdot sin(2x) \end{eqnarray}

Opgave 1204

  1. Sand
  2. Falsk
  3. Falsk
  4. Falsk
  5. Sand
  6. Sand
  7. Falsk
  8. Sand
  9. Sand
  10. Sand