Matematik opg 1640-1642 1645 1647-1648 1650


Indholdsfortegnelse

1640

LaTex: \vec a = {2\choose -5}\\ \vec b = {1\choose 6}\\ \fbox{\vec{b_1} = \frac{\vec{b}\cdot\vec{a}}{|\vec{a}|^2}\cdot\vec{a}} = {-0,97 \choose 2,41}}\\ \fbox{|\vec{b_1}| = \sqrt{-0,97^2+2,41^2} = 2,598}

1641

LaTex: \vec{AB} = {11\choose -5}\\ \vec{AC} = {4\choose -12}\\ \vec{CB} = {7\choose 7}\\ \vec{CA} = -\vec{AC}\\ \vec{AB_AC} = \frac{\vec{AB}\cdot\vec{AC}}{|\vec{AC}|^2}\cdot\vec{AC} = {2,6\choose -7,8}\\ \vec{AC_AB} = \frac{\vec{AC}\cdot\vec{AB}}{|\vec{AB}|^2}\cdot\vec{AB} = {7,8\choose -3,6}\\ \vec{CA_CB} = \frac{\vec{CA}\cdot\vec{CB}}{|\vec{CB}|^2}\cdot\vec{CB} = {4\choose 4}\\ H_{AC} = (2,6 -1; -7,8 +7) = (1,6;-0,8)\\ H_{AB} = (7,8 -1; -3,6+7) = (6,8;3,4)\\ H_{CB} = (4 +3; 4-5) = (7;-1)\\

1642

LaTex:

1645

LaTex: \fbox{|\vec{A_B}| = \frac{5}{3} = 1,667}\\ \fbox{|\vec{B_A}| = \frac{5}{2} = 2,5}\\

1647

LaTex: \vec{a}={5 \times cos(35) \choose 5 \times sin(35)} = {4,1 \choose 2,9}\\ \vec{b}={4 \times cos(75) \choose 4 \times sin(75)} = {1 \choose 3,9}\\ \vec{b_a} = \frac{\vec{b}\cdot\vec{a}}{|\vec{a}|^2}\cdot\vec{a} = {2,5 \choose 1,8}\\ \fbox{B = (\vec{b_a}_x+3;\vec{b_a}_y+1)=(5,5;2,8)}

1648

LaTex: \vec a_{1} =\left(  \vec a \cdot  \vec e \right) \cdot  \vec e=\left(  \vec a \cdot \frac{ \vec b}{\left.  |\vec b| \right.} \right) \cdot \frac{ \vec b}{\left.  |\vec b| \right.}=\frac{ \vec a \cdot  \vec b}{\left.  |\vec b| \right.^{2} } \cdot  \vec b\\ \vec{a_1} = {0 \choose 0}\\ \vec{a_2} = {2,72 \choose 6,53}

1650

pga. nulreglen kan y koordinatet til b,c og d være ligegyldigt, da a_y = 0. og da x koordinatet til b,c og d er ens vil krydsproduktet for a*c = a*d = a*b = 7.