Matematik opg 204-208 210 218-219 223


Indholdsfortegnelse

Opg 204

LaTex: s(t)=3t^2, t\geq 0

Fart i [3;4]
LaTex: \Delta y = s(4)-s(3) = 3\cdot 4^2-3\cdot 3^2 = 21\\ h = 4-3 = 1\\ a_{sekant} = \frac{\Delta y}{h} = 21\\
Fart i [3;3,5]
LaTex: \Delta y = s(3,5)-s(3) = 3\cdot 3,5^2-3\cdot 3^2 = 9,75\\ h = 3,5-3 = 0,5\\ a_{sekant} = \frac{\Delta y}{h} = 19,5\\
Fart i [2,5;3]
LaTex: \Delta y = s(3)-s(2,5) = 3\cdot 3^2-3\cdot 2,5^2 = 8,25\\ h = 3-2,5  = 0,5\\ a_{sekant} = \frac{\Delta y}{h} = 16,5\\

Opg 205

LaTex: O(x)=-x^2 + 600\cdot x +8000, 0 \leq x \leq 150\\ O(50) = 35500\\ \frac{O(x_0+h)-O(x_0)}{h}

Gennemsnitlig prisstigning for 50-55
LaTex: \lim_{h\to 5}\frac{O(50+5)-O(50)}{5} = 495\\
Grænseværdier for omkostninger ved 50 og 55
LaTex: \lim_{h\to 0}\frac{O(50+h)-O(50)}{h} = 500\\ \lim_{h\to 0}\frac{O(55+h)-O(55)}{h} = 490\\

Opg 206

LaTex: f(x)=2x-1

Funktions tilvækst
LaTex: x_0 = 1\\ \Delta y = 2\cdot (h+1) -1 - (2\cdot 1-1) = 2h\\
Differentialkvotienten
LaTex: \frac{2h}{h} = 2\\ \lim_{h\to 0}\frac{\Delta y}{h} = 2\\ f'(1)=2\\
Differentialkvotienten (xo)
LaTex: \Delta y = 2\cdot (x_0+h)-1 -(2\cdot x_0 -1) = 2h\\ \frac{2h}{h} = 2\\ \lim_{h\to 0}\frac{\Delta y}{h} = 2\\ f'(x_0) = 2\\

Opg 207

LaTex: f(x) = 2x^2-3x+4

LaTex: \Delta y = f(h+2)-f(2) = 2(h+2)^2-3(h+2)+4-(2\cdot 2^2-3\cdot 2+4) = 2h^2+5h\\ \frac{\Delta y}{h} = 2h+5\\ f'(2)=\lim_{h\to 0}\frac{\Delta y}{h} = 5\\

Opg 208

delopgave 1
LaTex: f(x)=3x-1\\ x_0=7\\ \frac{f(x_0+h)-f(x_0)}{h} = \frac{3\cdot 7+3h-1-20}{h}=3\\ \lim_{h\to 0}\frac{3h}{h} = 3\\
delopgave 2
LaTex: f(x)=x^{-1}\\ x_0 = 2\\ \frac{f(x_0+h)-f(x_o)}{h}=\frac{\frac{1}{2+h}-\frac{1}{2}}{h} = \frac{\left(-\frac{h}{2\cdot h+4}\right)}{h}\\ \lim_{h\to 0}\frac{f(2+h)-f(2)}{h} = -\frac{1}{4}\\

Opg 210

LaTex: f(x)=\left\{{\begin{eqnarray} x^2+2x+2 &,& x\leq -1\\ -x^2-2x &,& x>-1\end{eqnarray}}\right

f(x) er differentiabel i -1

LaTex: g(x)=\left\{{\begin{eqnarray} x^2+1 &,& x\leq -1\\ 1,5x+0,5 &,& x>-1\end{eqnarray}}\right

g(x) er ikke differentiabel i -1

Opg 218


Opg 219


Opg 223